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1. Introduction

This report is intended to give a complete unified
discussion of the electromagnetic response of a plane stratified
structure. The geophysical literature is full of various bits
and pieces of analysis. Most often these papers deal with very
specific problems, i.e. vertical magnetic dipole over a
conductive 2 layer earth. The objective of this report is
two-fold. First a detailed and comprehensive analysis of the
theoreticil parts of the electromagnetic response is given with
the emphasis on the physical meaning of the somewhat messy
mathematical expressions. An attempt is also made to use a
meaningful notation, which, hopefully, is not too cluttered.
With a clean compact development of the theory in hand, the
more interesting and much more difficult problem of actually
using it will be tackled. It is at this point where the
particular problem at hand must be considered. The actual
theoretical expressions for the fields in a stratified
medium can be obtained in closed form and take the form of
Hankel transforms or 2-dimensional Fourier transforms. The
numerical problem of actually computing numbers for the
electromagnetic field strengths is that of performing some
type numerical or approximate quadrature technique to
evaluate the integrals describing the fields. The particular
context of most interest here is the response of low-locs

dielectric media. Much of the numerical analysis 1is, therefore,
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devoted to problemsin this area. The analysis of conductive
media, while quite different in behaviour and geophysical
interest, is not very far removed from the theoretical analysis
and the numerical difficulties are not as accute as for the
low~loss problem. While these problems will not be analysed

in detail, a few side excursions into some interesting points

will be made.

Basic Physics & Mathematical Descriptions

The basic physics of electromagnetic theory is totally
wrapped up mathematically when Maxwell's eguations and the
constitive equations are written down., While the details from
this point on are usually specific, a wide variety of interesting,
and at first glance, unrelated phenomena pop out when these
equations are manipulated zbout. It is the physical interpretation
and understanding of the results obtained from the mathematically
simple basic equations which ave exciting. 1In fact, in the
last eighty years, these basic equations have provided food for
thought and controversy of some of the most brilliant minds.
Even many of these people have missed the beauty of the analysis
and have gotten too wrapped up in the details to appreciate the
subtl. unity of the various facets of Maxwell's mathematical
description of basic electromagnetic phenomena.
The analysis from here on will be conducted using the
rationalized ™S system of units. The time dependent form of

Maxwell's equations is



vxE = -3B (2-1) 9xH = J + 3D (2-2)
ot

P

v.D

q (2-3) v.B = 0 (2-4)
In order to completely define an electromagnetic problem
(no-mechanical coupling here) the constitive equation
introducing the electromagnetic properties of media when

treated on the continuum scale are required. These equations are

T = uH + y Mg (2-5)
T = oF + T, (2-6)
b = ¢F + B (2-7)

E, D, B, H, T have their conventional meanings; g is the
electric charge density; ut e, o' are the permeability,
permittivity and electrical conductivity subscripts o (i.e. y,)
are used to indicate free space values ; Mg, Pg are imoressed
magnetic and electric dipole moment densities and Jg is an
impressed electric current density.

For time-varying problemsit is convenient to define

generalized electric and magnetic source current densities

namely
ig = Jg + 3B (2-8)
3t
P = v M, (2-9)
ot

Now, combining Maxwell's equations with the linear isotropic
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constitive equations (2-5,-6 and ~7) one has

VxE = -uaH + M, (2-10) oxi = JE +eBE + 55 (2-11)
at at

plus the continuity equations

M. .77, -FIE = -0.§; - J5.F - £.7¢ (2-12)
it
- -
Vom + 9_ euH = 0
o (2-13)

For most applications, the response of sinusoidally time
varying fields is of most interest. The individual sinusoidal
responses can be built into transient responses with the aid of
the Fourier integral. The following time-frequency Fourier

transform pair is adopted for the rest of the analysis

£(e) = 1 _(” £lw) e Pt g (2-14)
“’ - 00

£ = T £(t) e at (2-15)

Upon Fourier transformation, the frequency domain equations

become
TxE = joull + A, (2-16)  Uxfl = (6= WNE + J, (2-17)
a=+97 + S.JE (2-18)
Je 3
T.%, - JWG.UH = o (2-19)

For time-varying field analysis, it is convenient to lump
electrical conduction and displacement currents into one term
by defining the complex permittivity

e =l +3 90 (2-20)
we!
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or the complex conductivity
§ = (¢! - j@e) (2-21)

In the following, the complex permittivity is adapted
since the primary applications will be to low-loss dielectrics.

The electric loss-tangent is defined as

tans, = T (2-22)
[}
we
Therefore
€= el + j tanse) (2-23)

In addition, time-varyinag magnetic losses are introduced
by defining a complex permeability with an analogous form

to £, namely,
' . S
b= u(l + 3j tano g) (2-24)

With this formalism of getting notations clear, one can now

get down to the business at hand.

The frequency domain wave equations for the E and H field
are obtained by taking the curl of equations (2-16) and (2-17)
with the result.
TxoxE - k2E + jWH x wu
and
UxoxH - k%0 - JWE x % = -jwed} + Ox 75 (2-26)

jwuls + v x By,  (2-25)

where k = wJEU is the propagation constant., The symmetrical
form of equations 2-25 and 2~26 is a result of the careful choice

of definitions developed above.

The terms Hx9vu and ExVe enter since u ande may be functions

of spatial position. In the following analysis pand € will always
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be taken as constant in various spatial regions with step
discontinuities between the regions. The terms ilxey and
Exve are dropped from the equations. These terms are

essentially replaced by the usually boundary conditions at
the interfaces between the two regions, namely, continuity

of normal B, D, J and tangential E and H fields.

3. Hertz Potentials, Point Sources and Particular Solutions

a) Hertz Vector Potentials

At this point in the analysis it is of interest to
consider the case of a source in a whole-space of constant
material properties. This leads immediately to the concept of
Hertz-potentials. The natural manner to progress is to
consider the electric field from electric currents and the
magnetic fields for magnetic currents.

ox0 xE - k°E = +jwTg (3-1)

IxU xH - k2H = -jwed, (3-2)
These equations are nathematically eguivalent and are
transverse vector wave equations.

Since a vector field can be split into transverse and

longitudinal components, i

E=E + E (3-3) .

-

exE =o0 v-E. = o (3-4)

one has
2

UxUxE - kB = jTg, (3-5)

- k%E | = judg, (3-6)
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A similar decomposition of the H field and Mg can be written
down.
In this context, the transverse component of E satisfies
the transverse vector wave equation while EL and ”gL
are linearly related. A much more expedient way of developing

E is to define with its loagitudinal and transve.se components

in terms of a single vector field, namely,

n
E=(1+385).Te (3-7)
Kﬁ
where E, =90. T, 4 ;ﬂit (3-8)
2 [ 3
k

(Note: I is the unity dyadic or tensor)
Te is known as the electric Hertz potential and satisfies

the total vector wave equation

a.x;xne - Gt.'-.n'e - k2 He = j(du:‘;s (3-10)
or q? ﬁ; + k2 ﬁ; = - jou¥g (3-11)
where vz = - PXU X + OV i¢ the Laplacian operator

Thus M satisfies the vector Helmholtz equation (wave equation
with time dependence transformed out).
Similarly, H can be expressed in terms of a magnetic Hertz

potential
"

H =(I +99. m (3-12)
Pr

and 2 2
vl + k€ Ty = jue M 12-13)
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The electric and magnetic fields associated with the magnetic

and electric currents are obtained from the Hertz potentials

as follows “
ﬁss = U x E = oxlle (3-14)
Jwu Jjwu

and similarly

EMg = oxH = uxn (3-15}
=JwE -jwe
The tctal electric and magnetic fields are then given by
- AN e -
E={I+099) .M, + oxm (3-16)
4 “Jore
k Jwe
- vl -
H= (I +90) .y + OxTle (3-17)
k2 Jeu

{b) Point Sources

The development of the response of a system to an
arbitrary excitation is most easily done using the Green's
theory approach. In other words, the response of the system
to excitation at a point is used to develop the solution for
arbitrary excitation. 1In the electromagnetic context, the

point excitation function are point eiectric and magnetic

dipoles.

Thus - - -
5; =8(r - r') § (3-18)
Mg =5(F -T') 8 13-19)

where T'is thre location of the point source,f is the direction
of the dipole moment and § is th. three dimensional Dirac delta
function.
Examples:

The point source are basic building blocks for analysing

any other source configurations.



Electrical Current:

A wire of infinitesimal cross section carrying I amps

~f current can be composed of point dipoles each representing

an infinitesimal section of the wire

\ //_—AL/I

=3 = IIdI; 5(T - 1)) / (3-20)

[3RY

Time Varying Electric Dipole Momen*

The electric éipole roment is O at.
-q +q
Pg = qal 6(r - ') (3-21)

Tg = Pg = -jegdl 6(r - r")

at
= X1dU 6(r - ') ({(3-22) T = «jeg (3-23)

Time Varying Magnetic Dipole VMoment

A point magnetic dipole can be visualized as an

infinitesimally small loop of wire car.ying 1 amps.

8
I
The magnetic dipole moment density is @

defined as

M= 1aa8(r - r'} 8 (3-24) £ - unit normal to dA
where 1dA remains finite as dA+- o in the usually point source
senge.

The associated magnetic current is
M, = -jwuo Mg (3-25)
= -jwuoldA 8(r - r') 8

Particular Solutions

The first stage of analysis before conti=inc to more

L e s

—-
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complex problems is to find the solution for the electric and
magnetic Hertz potentials for a point source excitation. These
are denoted as the particular or inhomogeneous solution to

the vector Helmholtz equation. The basic partial differential

equation is

Vziﬂeg + k2)1e = \-(Gen § (r -r') 8§ (3-26)
Im m jae
It is obvious that the particular solution can be expressed as
T=1mnp 8§ (3-27)
and that lp satisfies the scalar Helmholtz equation
v2N, + k2Mp = ¢ 8(r - r") (3-28)

The particular solution is the well known spherical wave form

. -_— ]
T =c¢ e kIT-r| (3-29)
-

41|Y -~ T |
4. Plane Wave Spectrum Representation

In the analysis of plane stratified media, the plane wave
spectrum approach is applied to obtain the solution of the boundary
value. This is the physical interpretation of the mathematical
manipulations. The mathematical basis for the development are the
Fourier transform and Hankel transform integrals.

The basic coordinate systems to be used in the later unalysis
are shown in figure 4-1. The Cartesian coordinates are denoted by
(x] x3 x3) and the associated unit vectors are (81 &, €3). The
cylindrical coordinates are denoted by (f,Q, Z ) and the associate

. A A
unit vector (P, %, 2). The ccordinates are related by

c )
X1 P cos ¢
‘ Xy |= ’fsin @ (4-1)

| %3 Le
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The plane wave spectrum is developed form the Fourier integral

starting with the scalar Helmholtz equation of the last section

vznp + kznp = -(6C(F - T)

and taking ¥' to be the origin, the 2-dimensional Fourier

transform pair are o
1 O j (A 1X1+A2X2)
Tp(X1X2X3) = 472 ). M(AprzX3)e diaidr,  (4-3)

{ =3 (A1X1+A5X3)
(X1X2X3)e dxldxz (4-4)

]
—

Mp(A1A2X3)

Combining 4-2 with 4-3, the p.d.e. reduces to the ordinary

differential equation 2
a’llp 4 (k2 -A2) mp = -C §(X3) (4-5)
dx32

2

2
where A% = A1° + A3

The homogeneous solutions to 4-5 have the form
ce2 _ 32y -
e:g(k A%) T X5 (4-6)

while the particular solution to 4-5 is

O 1 A5Y |x3)

- 2 - A
Defining ¥ _ (kz_xz)ﬁj(k ' 3—3 can be written as
[
‘ 3 (4-8)
Tp (X1X,%q) = 1 $ o JALXL + X2Xy +¥[X3]) |
an? te -2 e I arn an,

The rational for the plane wave spectrum terminology is

from the form of 4-8. The integrained is a plane wave ( the final
factor in curly brackets is to emphasize the wave nature of the
integrand) and the integral is over all possible wave numbers

in the &, - &2 plane. 1In facter_l  is the spectral amplitude of
25"



Ip in X3-X5 (X3=0) plane and the amplitude can be continued
upward or downward in space by multiplication by the factor e
It is readily seen that € is the vertical component of the
propagation vector k = (A1, Ay, ¥).

The double Fourier transform 4-8 is the Fourier form of

the well-known SOmmerfeld integral (1909, 1949), Watsoa (1966).

Since the Sommerfeld integral is most often given as a Hankel
transform, 4-8 will be rewritten in this notation.

Defining k in cylindrical coordinates (A,0,7),4-8 becomes

© 2]"[
fp (X3XpX3) = _1_ S . _eJ0fcos(x-0) + wizh)
A2 o ‘o 237 Adrdo0
(4-9)
Noting that the integral definition of Jn (2) is
n2
Jn(z) = i " cos nye*? 5% g
™
<o 27 _ y
= ()™ { cosvel? 0S¥ gy (4-10)
2m 'o
4-9 can be rewritten as_
Tp(X1Xpx3)= L | red 12l mon a (4-11)
ar lo Tk

which is the Hankel transform representation of the Sommerfeld
integral. The evaluation of 4-11 is given by Watson (1966)

13.47.4, namely,

- -

, Caie2 _ o2 TiviaZ « p2
( gme) 73T = YT pqp o HIVIRT T BT 4oy
‘o (£2 - y2)n ia2 + b2

In the remaining discussions the Hankel transform

notation is adopted since is the point dipole sources of interest

have particularly simple angular symmetries.

jU|X3!

N B Bl "t o k€45 SR S ot e T e e M
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5. Plane-Stratified Medium

Much of the remaining discussions revolve around the
response of point dipole sources in a plane stratified
environment. At this point, the stratification, notation,
and geometrics will be briefly outlined in order that these
details are available for use later. .

In the geophysical context, it is common to denote a
structure as consisting of N plane layers. The N layer
notation here is used to implyv that there are N + 1 regions
of different material properties with N-1 of these regions
sandwiched between 2 half-spaces. Thus a whole-space is a
0 layer structure, 2 adjoining halfspaces are a 1 layer
structure and a thin strip between 2 halfspaces is a 2 layer
structure.

The general geometry is shown in Fig. 5-1. The planar
symmetry is parallel to the Xj; - X2 coordinates. The upper
most region is denoted region 0 while the lowest layer
(half-space bouding the structure on the bottom) is region N.
The N-plane interfaces between the regions are located at
depths 2 = d;. Each layer is assigned a pair of constant
complex ~aterial properties (permittivity and permeability)
E,,u; . An additional parameter which is useful is the
tiickness of the individual layers t.. The structure just

described has cylindrical symmetry about the X,er 2 axis
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Xy or 2z
//L~“ » Xo Region
X1
0
7 = dl ' € Mo
4'.
t €1H1 1
Z = dy
1.
t, €242 2
¥
3
i .
\ 2
Z2 = dN-]_ +
tN-1 EN-1 MN-1 N-1
2 = dy y
EN HN N
Layer thickness t; = |d; | -d:]| =di - di, since z upward.

— \

[}
Layer propagation constant k; =lwe;u;

Figo 5"1

SRR
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6. Solution of Wave Equation in Plane-Stratified Medium;

TE and TM Fields

6-1 Hertz Potentials and TE-TM Fields

The basic wave equations for the electric and magnetic fields
in a whole-space were discussed in section 3. As was discussed
in that section, it is most convenient to express the fields in
terms of electric and magnetic Hertz potentials which satisfy the

vector Helmholtz equations

source term
02 5Ve% + k2 iﬁé% =§o (6-1)
Tm Tm

with the electric and magnetic fields given by 3-16 and -17.
At this point it is best to get a subscript notation
clarified in order that the region in question is contained
in the equations. Thus, the Hertz potentials will be denoted
g m (6-2)
where the superscript denotes electric or magnetic and the
subscript denotes the region i. Thus the homogeneous electric

Hertz potential satisfies

92 M o+ ki Te =0 (6-3)
in regions.

For the electromagnetic problem, the Hertz potentials have
only 2 components. As a result one has to work with only 2

scalar potentials rather than 2 vector potentials

™ = 12 (6-4)

HT = 1Mz (6-5)
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and 6-3 reduces to the scalar Helmholtz equation.

Examination of the electric and magnetic fields associated
with the 2 components of the Hertz potentials shows physically
why the potentials with only z components are appropriate. From

3-16 and -17 the fields of H? are

n® Fields
l ~
Eg =215 + v, oni§ (6-6)
ki 3z
Hi =2 x o lle (6-7)
“Jwlj
MM Fields
- ~ m - -8) = A -—
A——m =2 + o] €-8g =2 x 51T (6-9)
Y’ i

Examination of 6~7 and 6-9 shows that Hf gegz;;tes an electro-
magnetic field which always has its magnetic field in a plane
perpendicular to the 2 axis. In other words 2.¥ is zero at all
the planar interfaces in the structure. Similarly, H? generates
the analogous electromagnetic field which has E.E = 0. Referring
back to section 4 and the description cof fields as superpositions
of plane waves, the fact that Hf and HT have only 2 components
has a physical significance. From basic electromagnetic theory,
a plane wave incident on a plane interface can be split into two
components, one with E.3 = 0 and one with H.G = 0 where { is the
normal to the plinar interface. The selection of the above
description for the Hertz potentials yields the generalized form

of this result.

An alternate notation for the two types of fields is now
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adopted. 1In accordance with waveguide analysis, the H? fields

are denoted transverse magnetic (TM) fields while the IT fields

are denoted transverse electric (TE) fields. In instance where

the both types of field appear, the two components are denoted
as
(TE E, TM B}
(TE f, ™ &)

(6-10)

6-2 General Form of the Hertz Potentials

The general,homogeneous solution of the Helmholtz equation
for the problem at hand can be written down immediately. Using
the cylindrical symmetry of the boundaries, the potentials are

e . c e . c -l ,
mo= S3%ne) sam (1) ei% 4 Sefe 3% " an (af)

+ CnMYa(A?)  (6-11)
The subscripts and superscripts should be self-explanatory. For

the problems at hand only waves propagating radially outward from
a source at the center are excited and C,(A) = 0. 1In the above,
A is the radial wavenumber as discussed briefly in section 4,
while ¥ = (k;2 - 32)% is the vertical wavenumber in the ith
medium.

The general solution will take the form, for example,

- cos <.© jx 2 , €@ ALY . _
ne -z $o (n¢)§ (:Ai el 1%+ S85 e 1B, o) ax (6-12)

which is remaniscent of the particular solution in the form of

4‘11.
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7 Transmission Matrices and N-Layered Structure Reflection

Coefficients

7-1 General Boundary Conditions

In the last section, the basic mathematical formalism

for the fields in the layered structure. From 6-12, the problem

1ﬁrix‘uic m
at hand is that of finding the coefficients*$ B € (2). oOnce
n b8

these coefficients are determined thc formal mathematical part
of the analysis is complete,

The exact form of the coefficients depends on the nature
of the source. In this section, the relationships between the

m m
Ae and Bg in different regions are developed. The results of this
i

section then lead to the determination of particular form of the
coefficients for different excitations which are discussed in
section 9.

“he boundary conditions on electromagnetic fields at the
interface between any two regions are that the tangential

components of the E and H fields must be continuous. Thus

2 x E; =2 x Ej*l (7-1)
Z x Hi = 2 x Hi+*l

In terms of TE and TM fields, the tangential components of

the fields are

TM Fields T -
Transverse MEi = lzqc ang (7-2)
3z
Transverse TMH; = 2 x vhe (7-3)
—
~jou
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TE Fielés

- Transverse ‘TEj = 2 x gl (7-3)
Jwey
TE= _ - m
Transverse ~Hj =1 9, _23I§
kz 02 (7-4)
h FAN \ A
W ere =~ = o _’,-- + ‘\ﬁ_‘ ':
Ve | N " -

7-2 TM Boundary Conditions

The boundary conditions on the TM fields yield constraints

on the I® which in turn velate the A? and Bf from one region to
i

another. Combining 7-1,2, and -3 one obtains the result that

e e

Ei = i+l (7-5)

el ci*l
and 1 e e

ity = 1 alliel (7-6)
Eiui 92 E;:‘ﬂ;t' 22
when
zZ = dEf?

7-3 TE Boundary Conditions

In the same manner as for the TM fields, the boundary

conditicns for the magnetic Hertz potential can be derived in

the form m m
o= Iyl (7-7)
ui ui+l
L i o= m (7-8)
€, u, 92 e n.. —Alis
\gl“l!l az

for 7 = d(i*l)

The symmetry of the two sets of boundary conditions is apparent.

The material property factors €; and M, switch places.

7-4 Transmission Matrices

o
The general solutions for T, and HT are of the form 6-12.

SRR g

i, A N8 o
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-]

cos
Since the sin

factor which varies from region to region is

e N . e .{ -_"
am () e¥iZ 4 pm (el
1 1

(n%) and‘anOﬂdlfactors arr common, the only
0

(7-9)

Combining 7-9 with 7-5 throuch 7-8 it is possible to write

e
the relationship for AT 4
in the neighbouring region.

are used to illustrate the analvsis

In the following the TE

B in terms of the coefficients

fields

—

\'1 1°, ‘ "1 1 V1 e
- L -y Jhad o viAi+l
1 \a o sy Jﬂ.ﬂ: \ o e’ ‘i . \
= 33, i Rl o_,‘(.:1 Do FUi4L =i+l ¥ an LA
€y Mo e T, Tl TiFL o o MG )Rl
) (7-1C)
This result can be regroupedand written
. “j I w
m - |
AT M (7-11)
BiM | i+l 3 Bi+l |
. S L T 3
where
- TE ' : .
[ ] i -ngdl“'l o Z .i i+] ' aJ ‘w d'i«o °© 1
GHiaidi+1) [TE ’ ' o !
+ T: T | . F(7-12
ei+l o iis1 fi+) : o 9’36:.\63.‘ / (7-12)
éﬁﬁl 1 ‘"' '
. + +
‘}hgfl ] is the TE transﬁf551o§#matr1x for the boundary at
= d;\ and relates the fields in region i to thuse in i + ;.
*

Similarly, a matrix describing regicn i + ; in terms of i can be

written down and is

™ | g
U.”, TE
L L) = "i+1’iA\
— —
TE TE
The coefficients R1 i+l and T 141

reflection and ~ransmission coefficent.

(7-13)

are the Fresnal TE plane wave
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TE , . ‘es
R ™ 4 = ui+l¥i - uiti4l
- pi+l 1¥+ uidi+l
7TE -1+ gk _ 2 wisldi
i i+l i+ - . .
13 1+l Lidrd 4 pivoe

(7-14)

(7-1%)

In a similar fashicn the ™ ( e.:i1clents can be transmitted

across an interface using the M transmiscsion matrix which

takes the form

e ° e
K Al ‘= (;, U'IM ‘\ AJ.'i'l '
“\_ 1l - - - -i"'l
where
A
, - " gm3idiel N
\ \ . 3
\tEM. © = ui '
Cd i+l . ‘ ™
- yi+l o e]uldl+l R
™

TL.14l

R

ii+l i i+l

[ VU |

transmission coefficients which have the form

™ . .
= \ 03 - P
Ri}i+1 ei+ldi €11+l
eitli + eividl
™ ™ e v
1&,i+1 = 1+ Ri,i+l = 2 eci+l'i

ei+l'i + ei‘i+l

T oA, -

e’ ey

(7-16)

d. .
iy (o]

e-J \';0'| d

(7-17)

™ and T?M are the Fresnel TM plane reflection and

(7-18)

(7-19)

XY}

¢ e ————
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The matrix rotation can be extended :o relate region i with

region o or region N,

r' Al o/ - N N

! /L Ui i+l Ui+l i+l ..... UN-1 N \ (7-20)
| Bi ' By \

e o ‘ B

oA .

| =  Ui,i-1 Ui-1,i-2 ........ U1,0 l (7-21)
— Bi“; / Bo J

Any nther pair of layers can be related in a similar fashion.

N-Layer Reflection Coefficient

In the same manner as one expresscs the respon 2 of a
single interface by a Fresnal reflection coefficient, a more
generalized reflection coefficient can be defined for a stack
of an arbitrary number of layers. From examination 7-9 and
6-12, it becomes readily apparent that the A? coefficients are
the amplitudes of waves propagating in the positive 7 direction
while the B§ are the amplitudes of waves propagating irn the

negative Z direction

Regicn \Bi i

Now consider the simplest case of a wave incident on the stack
N-layers from region o. Bo is the amplicude of the incident wave
and Ao is the amplitude of the wave reflected from the stack

Region O \Bo ’/' 20

!

Region N ‘

\Bu
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A generalized reflection ccocefficient is defined as

R = (7-22)

It should be noted that in the wave number domair, a fixed
A ccrresponds to a plane wave incident on the stack in the FT
domain and a single cylindrical wave in the Henkel Transform
domain.

i.e. Bo(}) = (i~ X0) (7-23)
A very useful representation for R is obtained from the
transmission matrix formalism. For the example at hand one

can wliite

- 3 ¢ o1 1 y

\\ L twpn o vl A (7-24)
: VoV o1 14 ) ‘

ILBod wy  Wpa ! 1B

(Note that the development is the same for botlh TE and TM

type fields so no distinction is made here). Taus the reflection

coefficient becomes

o]
n
8
1]
£

A1+WBI

12

1 11 (7-25)

"
%

-/ 1 .
<1+‘_”_21_1_ Ay
w22 31/)

Thus R = Ao/Bo is expressible in terms of (A1/B3;) plus some

parameters depending on the electrical properties. Now the

i
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same thing can be done to represent (A1/B1) in terms of (A2/B))
etc. down to region (Ax.,./Byz4): Since there is no source in
region N, only downward propagating waves can exist and

(A, /By§) = 0. Thus

1 1
R = wp "”12 “’_1;\
T
;§I \1722 21 (7-26)
1 2 2
/l+w /w11 +‘/w12_ Wiy \\
I 5 TTFET
w22 \\Wzl \ 22 21 )
L+ vy [ ’1*@}
: TIT + ceasscse § 'T,’:ﬂl-
\ wzszbl R

which is known in mathematical terminology as a continued
fraction expansion for R of length N with the member elements
being independent of the excitation field and dependent only
on the electrical properties and their distribution with depth
in the stack.

If,for example, a particular source distribution exists in
region o, the fields to this source if the layered structure
were not present would simply be of the form

eI %02 (7-27)
plus the appropriate integral over X; the angular symmetry etc.
The effect of the stack of layers can then be represented by

j(oz

RBe (7-28)

and the total field by

- s Y
Ble-iYOZ Re? ' ©%) (7-29)
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While the particular case of the source in region has been
considered here, the source could actually exist in any layer
and reflection from below and above would have to be considered.
In the above, the problem of solving the response in a stack
boils down to finding the particular excitation for the given
source in a homogeneous wholespace. The layered structure
appears as an additive homogeneous solution to the origin
P.p.E. and is just a factor times the whole-space of particular
solution. The application of these results to some particular
cases is discussed in the next section where a number of

examples are worked out.

8. Point Dipole Sources over an N-Layered Earth ;

The preceding sections give all the basic mathematical
developments required for this particular problem. The
analysis is in three stages; first the particular excitation
field is developed, secondly, the reduction of the particular
solution into electric and magnetic Hertz potentials which
have only vertical components is made, finally each spectral
component is reflected by its N-layer reflection coefficient.
In the foliowing, the first case of a vertical electric
dipole is considered in some detail. The remaining examples

are very similar and as much detail is omitted as is possible.

8-1. Vertical Electric Dipole (VED)

The electric dipole has moment IdL and is located at a y
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height h above the surface of S
an N-layer earth. From
Regiow
section three 25 o °
&= d ¢
2 d, 2
— A ‘l
T.: T $6) S 2 (8- :
2 !
Ty 2= dy .
N
and the particular Hertz potential is an electric Hertz
potential with a component only in the 2 direction.
.kolF"P"
- J A
Trp = jwme Ll & 2 (®&-2)
A \F-7)
In Hankel transform notation, using 4-11 kl
Yo l2-
oo | J
T~ jumelldl I e Je(Af)A (8-3)
A Je ¥o

From section 6, it is apparent that the only excitation in
this problem is circularly symmetric and n @ 0. 1In the region
0 <Z < h, the excitation 8-3 gives

J¥oh

e . J-Z\-. e -
oBo Xe (Q 1’)

It is apparent from tune source and structure symmetry that
or.ly TM waves are excited and the reflected wave is defined

in region o by

. ) Yol
RS = A R™Me’ (g-5)

o
of
(-4



Table 8-1.

TE and TM F.eld Components

TE ™M
2
-l L2 ™ L2 <
E § jwz f 2@ kl 2722
- - <
{ D m —_ "
' 'b (-3
EZ o me - r:,atTr
e .?.’_2._ - A L2 e
Hf kR? ?Y}% Jwa f 2
I I . 4 2 Te
Me K2 f 20d2 Jwm °F
2
mo .?._. ™™ o
(“'z_ T+ hz '32.&
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where R™ js the TM reflection coefficient for the N-layer
v,
stack. The total field in region o is described/ the electric

Hertz potential

oo A J¥ala-v) T g Tol2 k)
s = jwasIdL S J = {e tR e Ta(AD)dA
[}

4T °
(@-<)
The fields in other regions can be obtained using the

transmission matrices of section 7 and continuing 4A§ and

oBg downward.

8-2. Horizontal Electric Dipole (HED)

The other orientation for the electric dipolez is in the
horizontal plane. Combination of the VED and HED solutions
yields the solution for an arbitrarily oriented dipole. For
convenience in the following, the HED is assumed aligned

in the &€y or ¢ = 0 direction. The electric source current is

then
z;\‘ ----- }—,x;-—-.—

Jo= I8 30D semye, G “ Region

2“’ 2—:0 °
2=d !
2:dy '

N

The particular solution for this current
distribution is an electric Hertz potential

aligned in the &, direction.

AR

- A
Tp* Jwie L dl ei‘ LS (8 -g)
4T \7F-F)
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Now the problem of solving for the effect of the layered
stack requires reducing ﬁé into electric and/or magnetic Hertz
potentials with only a vertical component. This is achieved
by examining the TE and TM electric and magnetic fields in

order to find Hg and Hg .

From Table 8-1 it is readily apparent that the vertical
electric field is associated with Hi (sincelqngenerates a
totally TE field). Similarly the vertical magnetic field is
totally associated with HT. This then gives the key as to

o

how to break Hp into its Hg { o components.

From section 3, E_ and Hz associated with ﬁb are given by

-/

)"‘.
= = L —_— T, -
€, nd 289k, ¢ (8-9)
+ - L A =10

Using the Sommerfeld integral discussed in section 4,

Ea™ ~ W?g sign(2-h) A e T (ASMA
®

W o €T
J @-v)

In order to obtain ng, Ez has to be regrouped to the form

analogous to that in Table 8-1 namely
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5 C+h A€ @ 12)
>

Noting that ¥2 k2 - Az, 8-11 can be written as

oo 2 &‘Fg\%-”
£, 3 duueBdl g | sguGe) (1- ;)a T(AA
AT )
(8-13)
) - 3t oo ¥\
- Awual..\\. [l + -Lz— }msqs S(?ﬁ(,a~k)e/ J‘.CA?)JX
AT ko 2 >
and ng is readily identified as
o N Tg\%‘”
. - . A
“_; dwuoLJ.L oy & S;cru(%--\n.)z 3‘(w)J,\
4T >
(8-14)

In a similar manner, Hz is given by

~ J wo(i"\\\

. Tal .. N e TaDd A
H - A —m—— S\ J A \(At)
¢ AT “(-P Sb

{1

ntadl
LdC ying S‘:", (\u: <) & Ji(A9) dA - )
b

ATl
- - ) 2 J‘{a‘i"’k‘
. T4t L 2 s S Ji e
= 2t Vv ,D%‘X R T (A5)eA



-31-

The magnetic Hertz potential associated with ﬁp is

readily identified as

Eand . I3 3 fala‘kl
T zdt s:..cpj LS J(A9)dA (8-1e)
AT s >

Analysis of Hg and Hg shows that ﬁb has been split

into a TE field which has a sinusoidal variation with
azimuth and a TM field which has a cosinusvidal angular
variation. In order to find the total field in region
o, the integrands of 8-16 and 8-14 must be multiplied
by the TE and TM N-layer Fresnel coefficients and then

added to the solution. The total solution is the

. [ ) SKa\a‘k\ . Uo‘a""k) .
Woet J whte _EL"_L s S {si”(e-k) e - RT"e"U }J\“YHX (8- l7)
Al S

 Yal2- Wl
- . J
T, = :E.J_L Siue S o!g ie

+RT! e\s fe(éw)} J"CA?)(J k Ch*ll)
AT > %

The fields in the other regions are obtained by the

transmission matrix analysis of section 7.
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8-3., Vertical Magnetic Dipole (VMD)

The vertical magnetic dipole problem is analogous
to the vertical electric dipole problem and can be
obtained directly by replacing jwu by - jwuc, Idl, by
-jwuo IdA and RT and RTE, From section 3, the fields

can be expressed in terms of a magnetic Hertz potent.al

A d\ul?-?‘\
Ty = ~0 &ueldA 2 (8-14)
AT (V-7
Now, Hg is identical to ﬁb and
T¥al2 -h|

Tr:‘— _ ' fuse TdA SOOOA {ed ‘\»-RTEQ"“(B“)‘% JD(A")JA
]

4T %

(8-av)

The response is purely one composed of TE waves as to be

expected.

8~4. Horizontal Magnetic Dipole (HMD)

The last point source to be considered is the HMD. As
with the VMD, the solution can be obtained by analogy with
the HED result. The roles of ng and ng interchange with the

result that

. 00 g o jhNERl L jWE)
Te « o4 Idﬁ_ ) S 9-5_ {e , +-'RT < °
° AT ® Y

T (AP ol A

82y
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2 oo | o (2-h RO
. =@ _fouo LA absCPS {siw(&-k)co -Re % )
AT >
(8-2a
J,(AP) A )
8~5. Summary

The last four subsections, completely cover most of the
use geophysical source models. While it has not been discussed
heie, the addition of a stack of layers above the source can
be accomplished in a similar manner to the above derivations.
For earth bound applications this can be used to describe

ionospheric effects.

9. 1 and 2 Layer Earth Reflection Coefficients

For the preliminary analysis of the SEP problem, the
response of a half-space and of a 2-layer earth are discussed
in detail since these special cases contain all the particular
features of a general N layer system. The reflection
coefficient for a 2-layer earth are obtained from the continued
fraction expansion of section 7. The physical interpretation
of the mathematical form of thg reflection coefficients are
discussed.

The 2-layer earth is sketched below. The stack TE

reflection coefficient is

As B
}:*‘3 (- T—
R Te_ IS (9_‘) AT B, Tn
6: 2:d,* ‘t\ —
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The transmission matrix for the Z = d interface is

TE - e
[ u0| ] - 5\
and

Q7E - i

= ?E
R

« I R:?

T (3-2)
TEe !

(Res = /eI%)
[+ QIE (%)— (5-3)

\

The Z = 43 = -t, transmission matrix becomes

Bt e,
e Ree

CI
[ UT:] R M | G-4)

Now since Ay/By = 0,

A ~€
— = Ma
8.

and

o)
m

n
]_.

Rar

‘ 15 ~y(hen) L, 2 (BT ¢,
R e [ S J
J 2%, t,
e (3 -¥)
by
Re:w ~ '/pTt
+ ( ® /R ' ) (3-‘)

( {4+ Rae, P\; e;l:ﬂf)
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The TM reflection coefficient for the 2-layer earth
is obtained in a similar manner and is identical to (9-6)
with the 1E superscripts replaced by TM.
Tre mest important vart of 9-6 is the denominator of
the second term. Taking
Te ~e 20T, 9-?
“ - - Ro| R't e ( )
The multiple reflection back and forth between d = 0 and

d = -t, in region 1 appear by expanding

L "
{ ‘d = )\2'-6 o (9-%)

in a geometric series. Each term of the series represents

an additional reflection a? the two boundaries with
appropriate reflection amptitude change plus a "phase"™ change
2¥, t, corresponding to the two way path through the layer 1

as sketched below.
Note: Rm’ - R..

The half space feflection coefficient can be obtained
in three manners, in the limits as Ry, + 0 (i.e. By Y Mg,

51"52) tl*ﬂandtl-'O.

Case 1l: When Rj2 = 0

RYE _  Rov (9-9)
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as expected.
Case 2: When t; + =, any infinitesimal loss in region 1 will
cause

e —> o t, —_— O (5-10)

and

RTE - R:?

(5= 1)

Case 3: In the limit as t, -~ 0, one cbtains a halfl space . ith

material properties €2, u2.

TS <€
RTE: Rer ':- R (3_‘25

T e
\4 Rey R

Using the fact that € IR T

PRIR DR A N
one can show that

Ta ¢
RTE = Rea "-3-")
Note:

T
Ror 4R R O R O R CAS LN CASIAN)
sartere (aaa Vo +ais 0 (427, 4 aae W) F (240 ¥e-ete )W T 0 72)

Ma Yo = Me ¥,
A, Co + 24Ty

Rel (9-14)

In the above the emphasis has been placed on the TE reflection

coefficient only as far as it illustrates the nature of the stack
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reflection coefficient. All the analysis also holds for the
TM reflection coefficients.

One other important feature of the 2-layer reflection
coefficient is the resonant wave numbers for the waveguide
formed by the slab placed between two media of differing
properties. In most instances, the guide is leaky. These
resonances occur when

er‘tl
\ - Ko R e = O

which is the general form of the normal mcde equation.
Solution of 9-15 plays an important role in the analysis of
the 2-layer earth response. This will be discussed in detail

later.

10 - Normalization and Tabulation of HED Fields for SEP Application

In this section, the formal mathematical solution for the
HED derived in section 8 is rewritten in a normalized format
which facilitates computation aspects of the evaluation of
the fields numerically. Since the primary source of interest
for the SEP application is the HED, it is used as the
example in the following sections. %ne other dipole sources
can be treated in exactly the same manner so there is no
real s Of generality.

In the MKS system of units, the electric and magnetic
fields have units of volt/m. and amp/m.; the spatial

dimensions are in m. and wavenumbers in m'l. For computation
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Table 10-1

Normalized Field and Parameter Definitions
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Table 10-2

Normalized HED TE Field Components
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Table 10-3

Normalized HED TM Field Components
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Table 10-4

Normalized HED Radiation Fields
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purposes it is convenient if all these guantities are

normalized in such a manner as to make them dimensionless.

Examination of the HED electric and magnetic Hertz potentials

of section 8 yields a convenient set of factors for

normalizing the E and H fields. The wavenumbers are

normalized w.r.t. the freespace wavenumber and spatial

dimensions are normalized w.r.t. to the freespace wavelength.
A summary of the normalization procedure is given

in Table 10-1. Combining the definitions of Table 10-1

with expressions for the fields in Table 8-1 and the forms

of the electric and magnetic Hertz potentials 8-17 and

8-18, one obtains the normalized expressions for the TE and

TM fields given in Table 10-2 and 10-3. For analysis of

fields at large distances from the source, the fields take

a simpler form since only the radiation fields have to be

considered. The radiation fields are summarized in Table 10-4.

11 - Radiation Patterns of a HED on the Surface of a

Half-Space

11-1, Basic Formalism for Radiation Fields

One of the more important aspects of SEP method is the
manner in which the presence ¢f a nearby halfspace modifies
the energy radiated by the dipole. 1In this section, a

general discussion of radiated power is followed and it is

T VP TSSURe HPS

i B oA Bt LI B i 9
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applied to the particular case of a HED on a loss-free

halfspace.
In the discussion of
energy radiation and radiation
patterns,it is most convenient
to adopt a spherical polar
coordinate system as sketched
to the right. For any finite
size source, the fields at
large distances from the source
are the radiation fields and x

the fields are of the form
ke

f(eo,®) =

(u-v)

All higher order terms in 1l/r become negligible as far as

radiated power is concerned where r + «,

For the layered e-cth problem at hand, it was discussed

in section 6, that the fields can be split into two independent

types namely the TE and TM fields. This convention is

continued here in order to facilitate later analysis.

very large distances one has the fields

A

dler

ETE @ Eo(0@) &

oo
H

: Hel(elk) o 2
3

yrr

R A o
(s He (8.0) + € Ha(eﬂo)) %T’

v

At

(h-2)

(- 3)
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— .hv'
E"= (? E,(S.Q) *-‘&3 Ea,(e‘q)) e;"-
-
(t1-4)
A dlev
T g e, e £
o (8) =
-
~TH A J
H =2 @ Helow) S (-¢)

Eg and Ti@ as well as E and Hg are simply related by Maxwell's

equations
- =, =€
HTE - Ok & <|‘_ (,)
3(¢JM
: @ (8@ Gx e (1=7)

p=
It should be noted that to remain consistent with the concept

of radiation fields, higher order terms in 1l/r must be

neglected. Hence in all operations of the form 11-6, the

¥V operator acts only on eikr term in the field as written
in 11_70
Further
A ) ~
- A Jyr X v ro rinbw ]
& Vv 20 fb@
© o Vlin9g° v
(1-9)
A .
- wr yer
= ¢+ X 2 el -ahrek
riing 00 v or
. e A
$ -—J‘QSJ (S )
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Once again only l/r terms may be retained for the radiation
field analysis and it is permissible to write

~ A gkwr A aker A v e
Ixae P -4 (D€ o -Sywe (1-9)

although this is not mathematically correct. In a similar

manner
jur _ e
Sxoe - -& xve’
. (h-10)
- A . Jhr
- ‘Lp dk -’

With these basic formalities settled one has
- sk
HTG— - EQ(Q.‘O) (~g\sk>€0

Sw.ur‘

Jhv
~§,5£ Fe(ge) &
X

{:qis identified as the intrinsic admittance of the medium

!

Q=)

7]

in which the waves are propagating and is denoted by Y. The

intrinsic impedance is given by

z = \';‘ S J:E (1!-!2)

In free space Z = 1200l chmgs. Thus 1l1l-11 gives

Ho = ~YEg (n-13)

In a similar manner, znalysis of TM fields yields

=™ Ix H™
£ = -

-

(11-14)

v
= ¥YHeo e
2
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and

m
"

Z»l+@ (!h-S)

e

11-2. Poynting Theorem

For a general distribution of electric and magnetic
currents, Poynting theoren summarizes the energy balance
of the electromagnetic system. For continuity, the general
form of Poynting's theorem will be reviewed. The power

supplied by the source is given by
F - /[/ (5".E - ”_Z;*- ﬁ)dv : f[}(ﬁ:é -;J“, F)dv (11-10)
Voo v

where V is the volume containing the electric and magnetic
current systems §s and gys.

Now from Ampere's law
S*E - T.ownd? -JufE"E (n=17)
and Faraday's law
#E = T Y A TS i (n-1e)
Using the vector identity
J-(Ax8) = B-OXR -A-Oxi (1v-19)

one obtains

.t-j:,g = w:E -9 .(E KR') -:\“‘-*E'é‘ (\~20)

— - - -— T~y = . 4 .-'
ﬁ(,"-t: < ¥ pxi t O.(E%i) +yod @0 (n-a1)
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Now
Y = . ~ - —y - . — =
3E  jwa B8 4 B - Ou(ernt) o’ €
(11 -22)
ﬁ‘ g - N >~ =% - — 2 = . $o.o¥
g H 2 ocjee &8 + %G 45-(€xH]) g HH
and
N B~ = & = _ < - —_— = .
30 E -M-H = ‘(5{6"-%-(4*) +y@ (tee* -C*E-E")

(r-21)
: = =¥ =" = =
rjo (uiw? o 3-8Y)T.(egu? +E*xR)

Thus one obtains
Real P = ~wt! 4aud EE&¥ - wa ton S - R —Re - (Exl?)dV
) e

V.,

: W 533 (€'dnfy EE? + ' 4ol B-8¥ )dv
o>

(-2}
~ Real (Rxw¥)-w dS
S
and
ey P = \5,{,,, (-wc€EY 4w dn®) gy
(n~2¢)
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It is not difficult to show that if tan §e and tan 6, are
not identically zero, the surface integrals over the infinite
sphere will vanish identically since the fields will be of
the form

-7 p3vr
e_ (i1-2¢)
v

for large r and go to zero exponentially with r + «, Thus

for a finite loss in the media

Real P = = wSSS (['-kmse g-&* Fan' Hand a'r">JV (122

Veo

dmanf 2w fSf (- REY tant H-B¥)dv

(11-a0)
Vso
For loss-free media
fod A
Real P =~ ([ (ExA*).n ds (1-23)
Voo
- - _-" -
Lwmagp:  w ff§ (-c'EET +u H.u") dv (11-10)
Veo
One minor point to note is the rational for retention
of one field of the order l/r in the radiation analysis.
This is readily obtained by examination of the real power
dissipated in a loss free medium. It has the form
Real P = - =~ = A
és (Exit) b ds Ce-31)

oo
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I1f |E| ~ 1/.n and |8l ~ 1/.ms on the infinite sphere so

- v v .

Real P = - S S 1. swe dede

Nh?-@" - ) vh‘ﬂ't (“-’z)
- O wales) Wew -2 2 o

Thus n and m equal 1 and higher order values yield no
radiated power. Higher powers of n and m describe the
energy stored in the reactive inductive and capacitive

fields.

11-3. TE and TM Radiated Power

The energy radiated in TE and TM fields is now
formulated in terms of the field components which are
transverse into the planar surfaces of the system. The

radiated TE power takes the form

pTe - -l (ExR*).3ds
- (1-33)

a¥

==y |Eq (0,6)| o do deo

The TM radiated power is expressed in the same manner and

takes the form

™. g 5:): | He (0@ | *vmedode  (h-314)

11-4. TE and TV Power Radiated in A Whole-Space by a HED

The power radiated by a HED is readily expressed by
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combining the results of 11-3 and section 10. The Ey
TE electric field has the form

o 51’o(e-m

g, = el L e Te(aedn
(h-35)
. eiR®
R ak e R=((aem) +02)'"
R
Thus
Ep(00) = - T O (i-136)
and
T * T .
F™" s - Y j; IO @ e fode
(- 137)

= -aw\V

The true power in watts must be obtained by multiplying
the above PTE for the normalized fields by the scaling
factors for the E and H fields of Table 10-1. For the
following discussions, only the relative power is of interest.

The TM power is determined from the He TM ficld

:’T'o' 3=

U= cos® [TA sigela-da Teladdn

IvR h-130
T -y emee tos 0 & ( )

and therefore

Ho(o,0) = ~) L3¢ cas @

(n- 39)
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The TM power is then expressed by
™. ™ 2
P4 - Z S cos 'O sineds j cox‘(oo!(p
3 >
(1-40)

- o artr
5 B

As for the TE power, the true power 11-40 is obtained
by nultiplication by the normalizing factor for the fields.

The true total power radiated by the HED is then

—

ks (4am*

P z _CE (‘"1/40 -I:!dctkol {__f_:r” C‘J(z /!54 (I(-— 4-/)
k.t (4(1_ ) L "
The addition !w? factors appear since the normalized
fields are given as 1/R while the integrals 11-33 and 11-34
are cased on the use of 1/r hence a difference of ‘/k."

in the magnitude. Regrouping 11-41 yields

__ 2 LUy
f_ — ' ( %‘ +_‘zl> Wwats G"""-)

where Ke = £¢/co0 and Km = u/uo.

11-5 Radiation Pattersn for a HED on the Surface of a

Half-Space

The radiation patterns for a HED on the surface of a
halfspace are obtained from HTM and ETE py finding the
angular dependence of the 1/r term fields. The
general picture is sketched at Ko iam

Eo Lo
the right. The radiation pattern - pu °

€ A, 1
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in region o will be derived. The pattern in region 1 is
obtained by the fact the solution is the same as for
region o with material properties interchanged to - ¢,

€, =+ €0 etc.

From Table 10-4
o 'T'oi'

£ = -3 S‘ .S.,% ((+]5) e’ Jo(apan (-a7)
i o ;7
e * cosa Ib A (eI % Sae) dn (Li-44)

The exact analytical evaluation of these Hankel transforms
is not possible. For the analysis of the radiation patterns,
however, an exact form for the integral can be obtained by
obtaining an asymptotic expansion for the fields. This
requires that P and Z be large. This is a compatible
condition since analysis of radiation patterns and power
radiated is carried out at "infinite" distances from the
source. ’

The first step in reducing 11-43 and -44 is to note

that e .
T T
t+Rey = Too (i~ «s)

™ TR
- Qi = Tis (- 40)

Next the integral from 0 to = is transformed into an
integral from - © to ». This can be done for all order Hankel

transforms with the aid of the identities in Table 1l-1. Thus

oD -~
s < 3w - A TE \ST‘*
% = 5 3% Ter @ Ny (af)dA (-~ 4 7)

Vo
- o



-49-~

o hia d
WQ < (-Oiq S FAY T(b <
o2

(2
( Ho(ae)da  (i1-48)

To this point, no approximations have been made.

At this point the contour of integration will be changed

and the asymptotic form of the Hankel function introduced.

Thus

\ oo
Ea* -*_:‘4’5 T e
o e T’o

L -]

_qe J(Tez +tA®) ™4
(=%

2 AN (u-<9q)
rAe

\ T‘e+¢\ﬂ .7/
s sy o 3T -3¢ F
2Z? —3?‘-2; LTy © c TAe d (!l-rb)

Examination of 11-50 and -51 are in the

form which admits

evaluation in terms of an asymptotic series by the saddle

point method. The contour C is the saddle point contour in

the complex A . In changing the integration path from along

the real axis to C, the effect of any singularities lying

between the real axis and C must be considered. Fortunately,

the integrands in 11-49 and -50 have only branch point

singularities but no poles. The effect

of the branch point

singularities is the generation of second order effects.

These effects will be discussed later.
the branch points may be safely ignored.

this will be seen in a moment.

For radiation patterns,

The rational for

o kA teat s e
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The exponential in the integrand
M2 + A
e’ ) (1~ )

and the definition of the saddle point and saddle point

contour are dealt with in detail in Appendix 1. Transforming

from the A plane to the u plane 11-49 and -50 take the form

eq : -sime (2 ej (R.ﬂlq.) r —ar
= <;11'P flu e Adu (f1~52)
- P00

“(R-"4 -
Ko~ cae (27 ¢ )r&wm“ odu  (1-53)
AN

where
- . Y2
Fow): 3 AT ) aa (1-s)
and Tw‘(‘L) A
Fa () = ,1}:_'1_(.9_). T (W) :_4\- (1-5¢€)
A

Now in the vicinity of [LP, the saddle point of the exponent,

N Lie +cpn Ui-s6)
where C ¢ 1/R. In the limit as R+ », A+ /. Since
the integrands of 11-52 and -53 are exponential integrals,
an asymptotic series can be developed by expanding F1 and
F2 in Taylor series. For present purposes, only the o order

term of the series will be retained and

. U, TE
F () = ) A‘(.Q To (A(o))_"_-[;‘:’
—PO(Q) d% ]
(n-s7)
Uy
- N LY s
= ) = 'S N
ngy o ) ©
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and o - oo -u?
\l. Filwle “dur g (q) | e au (1-50)

-— gl

ST E(o)

If higher order terms in the asymptotic expansion of

i)

F; were required then terms of d%"F in the Taylor series

duZn
would be required. It is not difficult to show that terms
of dan will contain factors of C2n since
du2n

AR

— - T A€

dut - C AZ" (l\-S"\)

Achp
since :‘.EA‘ ~ o . In the limit as R + «, all these
u

relations become exact and the asymptotic series is in

powers (1/R)®, At the branch points of F, the function

derivation become singular. Since this only affects terms

in £ and % of higher order than 1/R, the branch point

effects may be safely ignored in radiation pattern analysis.
Putting all the pieces together one obtains

~ . e Q&YZ
&, - - S\w(p Ton (-&) K-} (_\|..<.b)

k% 4
. ™ e’
x((et y oI s e Ttg (%) E (\l-(.l)

Thus the radiation pattern is just that of the whole-space
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modified by a Fresnal transmission coefficient. The
radiation patterns for a dielectric half-space with

dielectric constant Ke take the form

Z >0 2
——— 2%
et s e () e
. 2((\-& «2‘.')"‘ \2
e (oe)]'s cor’e e
¢ ” (((‘__a_‘)_*%:)'h*hﬂ (V-e3)
Z <0
[ Goloe) ]t &9 2 = )
e(0e)| 2 = (a . % C(.m‘)w.“)u,) (11-0e)

l HQ(Q.Q)'!‘- ot 2_([\-"‘)*“!“;)”1. 3

]
TR PP

(t-e¥)
® T 058 ne Jw, - vefractivendex ¢ He eurih,

The resulting radiation patterns are plotted in Fig. 11-1,
through 12 for various values of dielectric constant for the
halfspace.

The particular feature to note is the strong directionality
of the TE pattern into the earth. This peak in the patter.
occurs in the direction of the critical angle of the air-earth

interface.
9‘.. s;‘“nl e;

The TM pattern exhibits a null in the &, direction but shows
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Table 11 ~ 1

Useful Bessel & Hankel Function Identities & Properties

Tal@) 2 4 (Hp(@ + W2 ®)
b (2 = - hice)

( -
cwl(2) = Cu. (2) - .3. Cnl?)

Asymptotic Forms

Jn(?) & )i COS(&-".‘-.“ -
we 2

\ ; 2."\2““‘..
“w(a)ﬁ~gé ISR E>

N
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a lobe of increasing strength at angles of 0> e

for increasing K,.

2. Surface Fields about a HED on the Surface of a Half-space

In the previous section the radiation patterns for the
HED on the surface of a half-space were developed. Examination
of the pattern in the plane of the interface shows that
both the TE and TM patterns have a null in this direction.
The fields in this direction musgiof second order at large
distances from the source.

In the SEP experiments, the fields about a HED are
measured on the earth or lunar surface. It is therefore
instructive and useful thQQEressions for the fields
near the interface. For these applications distances of
1l to 20 wavelengths from the source are most interesting
and use asymptotic expansions to estimate the second order
fields is feasible. The general nature of the fields is
discussed by Annan (1973) and is sketched in Figure 12-1.
Near the interface the fields are composed of two parts, one
which propagates outward with the phase velocity of the air
and one which has the phase velocity of the eavth.

In this section the asymptotic expressions for these

second order fields are developed for the case of a half-

space with free space magnetic properties, but arbitrary
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dielectric constant and loss tangent. The expansions
are obtained by analysis of the limiting case of the
saddlepoint expansion of the last section in the limit
as 2/P + o. This limiting case of the saddlepoint curve
is sketched in Fig. 12-2 and is essentially two integrals
about the branchlines from the branch points at the right
of the imaginary‘\.axis. The branch point at A= 1 and
the saddlepoint merge as 2/P + o.

As an example of how the solutions are developed,
the TE H, component will be analysed in detail. The other
solutions are developed in like manner and the results will
be tabulated. For the development Z will be taken to be
finite, but such that (2)/P <<< 1. The Hz field is then

expressed as

- . (V4 >° ? 'T’o(éAm) . 2%
Yo = TGN e . P
2 - it = dl\.(la-\)
Tiie

Regrouping the integrand and deforming the contour of
integration to that of the limiting steepest descent form,

12-1 becomes

o*:b"’ s oo
R i ;ar Tan .
= = \
FA a - Fola) e + S F.(A)e)’ dan (12-2)
L
where
s =

FR.(I\) - C{S,A.)

(\ 1-3)

11

130 FR, a) - Eu, ()
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where Fa. is the value of the integrand at the right of
‘
the branch line and F‘i is the value it takes at the left

of the branch line. Defining
JPAL T )P~ (Kazm) (la-a)

the first integral of 12-2 becomes

3P e -u
P > ° ‘+JIF) 44 ({a-5)

Similarly letting

g e 0k e~ B ((2-6)
the second term of 12-2 has the form

. 30K P (eo gy -8

e j Fo (J%, +J§>e d@ (u~7)
The basic wave nature of the two branch-cut integrals is
now apparent. It only remains to evaluate the wave amplitudes.
The steepest descent technique is now applied to obtain the
asymptotic series expansion of the integrals in ﬁ' and the
first non-zero term in the expansions yields:;;plitudes
required here. Higher order terms may be retained; however,
their contributions are not significant for SEP applications.

To obtain the asymptotic expansion, P is assumed >> 1

. &
and non-exponent part of the integrand is expanded inaTaylor
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series about u and B = 0. In the vicinity of the

branch points, Fl aad F2 take the form

uccb(udh_v w* (3(0)-&- Q "D + 9 CO)M cen Qa-8)

where the function g is expanded into a Taylor series

about 4 = o. Thus the integrals in 12-2 take the form

e =
r- Sb < 3(&,&)6 dA
© E a9 Tlwew (12-9)

whereT (x) is the camma function. For the present purposes
only the first non-vanishing term is retained in order to
obtain the second order fields. In order to obtain the

amplitudes of gn(o) , it is necessary to examine the

behaviour F, and Fy near A= 1 and\ = ‘}F-K—' respectively.
ye“~ “+ '""/4-
. 2 - TE z
F°= JA § —P—: — TB\ g = (‘J.-'Q)
o
. left .
The + superscripts denote the(right\ side value of the
radical near branch line
nS = - T
° ° (12-n)
Since
ﬁ
Te . 2\le
Tou —_— (
- (a~iq
l’a*'?' >

i, N
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12-10 becomes

R STV
Fo = 4y 4\ ___._.__...7° 2 e ((L-I‘:)
nr-mt e

and the first term of 12-8 is obtained by noting that

+ '
‘T'o -~ (‘_k"(’J‘ %>.‘_> <

¢ ~2y %) "2 (12-14)

2

4

2 24 o
with result P

9oy - 8y 1 -
‘?. ta- 18
and C = 1/2 eow (K‘-') ¢ )
| |
Similarly about A= \/'K” Fl becomes

330/ g (4 Ktyl&
~ /4 ™ g Lte
. W {
F o2 4y N 12 e -_——

- 16
mr (-7 1 - 1)

which yields '
Y = (K\‘ ‘) b a
gCo) ~ 85 Wi <

Fo (w1 (>7)

P

and C = 1/2. Since | (3/2) = %- » the resulting expression

for the H field becomes

. . ”1

. JP K) J& P-(x.-) *a

g/;-‘ .?.i’..‘l‘.?..{e - K e (12« 19)
&,~1)P*

The approximate forms tor the HED on a half-space second

order fields are listed in Table 12-1. Before leaving this
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section it is important to note some mathematical

and intrinsic physical points in the development of the
TM response. The applicability of the TM expressions
in Table 12-1 is highly dependent on K, not being
extremely large.

While the difficulties cannot be dealt with in
detail here, the basic mathematical problem stems from
the Taylor saries expansion 12-8. For the TM reflection
coefficient, a pole located on the lower Rieman surface
of the reflection coefficient approaches A=1 as K, > «.
This limits the radius of convergence of the 12-8 Taylor
series. This pole may be handled by application of the
modified saddle point or steepest descent method (van der
Waerden (1950)) in which the effect of the pole is
subtracted from the integrand and evaluated separately
while the remaining porticn of the integrand is evaluated
as above. For K, in the range of SEP applications
(1 < X = 15). There is no need to go through this extra
step. The role of this pole and its effect on evaluation
the integrals has been a source of controversy s'nce
Sommerfeld's original discussion of the problem in (1909).

A good discussion of this problem is given by Banos (12366).



Table 12-1

Asymptotic Form of Second Order Fields about a HED on the

Surface of a Half-space

i
) . . V‘ - - 114
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13 HED on the Surface of a 2-lLayer Earth

13-1 Introduction

One of the first objectives of the SEP experiment was
the detection and delineation of a planar reflector
buried at depth in a low-~luss Zdielectric earth. The fields
at the surface of the earth should be those generated
by energy transmitted varallel to
the earth's surface plus energy Resion © 7o Re

reflected from the underlying

interface. As it turns out,

the reflected signal, in many
instances, is stronger than
the direct one. For some
field componente, the
reflected signals are weak and the direct signal dominates.
There :r.- *wo techniques for obtaining mathematically
useful exyrue~-icns for the fields ir the vicinity of the
rec’'on oe-region 1 interface. The one technigque is known as
the geometrical optics solution while the other is the
normal mode solution. The two solutions for the fields in
region of (2)< o will be developed here. The two techniques

arc based on the properties of the 2-layer earth reflectien
coefficient discussed in section 9. 1In particular, the two

types of solutions are contingent on the applicability of

PSS R
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equation 9-8, the geometrical series expansion of the
denominator of the reflection coefficient. The effect of
magnetic properties will not be considered here and the
permeability of each region is taken to be the freespace

value.

13-2 Geometrical Optics Solution

Examination of the HED radiation fields in Table 10-4
shows all the TE fields contain the factor (H - o)
1+ RTE (3~1)
while the TM fields contain the factor
L RTM (13-2)
Upon subs:itution of the 2-layer earth TE refl-_ction
coefficient given by equation 9-6 and the equivalent TM

coefficient, equations 13-1 and 2 become

Tor (VHRI Q)
(1 - rRIEREE)

(13-3)

Ta (- o)
(\- R v @)

is the phase shift (and attenuation) for

(13-«)

where g = ejz-‘.'1t1

a 2 way pass through region 1. If the interfaces are poor
reflectors and region 1 has a finite loss then the terms
TE TE ™ _TM , .

- Pl .
R.g R 12 g and Rlo R12 B have ~uplitudes less than unity

When this condition is satisfied 13-3 and -4 can be written
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with the aid of 9-8 as

e Te _ve O y nay 4
Tor +Tey Ty = ( T.&)(R:f) (ﬁ)" (3-3)
NI o
—n TN ™™ °° " net
- larnd ks { * 4
AL To Tou “2:_ (R:.“) (R\:) (.S" (13-6)

The nth term in the series represents a wave which has
made (n+l) 2 way passes through region 1 before being
detected at the receiver. For example, a TE wave for

n=¢Cand n =1 is sketched below

~
TaiTy Rup a

Wz o

The final step in the geometrical optics analysis is

the evaluation of the Hankel transform integral. The solution
is obtained by saddle-point contour integration on each term
of the above series and retention of the first order term.

The half-space solution which is the term independent of the
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series in 17-5 and -6 is obtained by retention of the
second order terms. The field expressions are those
developed in section 12 and given in Table 12-1. As an

example, the Hz TE field will be derived here.

U, = Ko (Bs) + EQZ‘:: (13-7)

where Hz (H.S.) indicates the half-space solution and
7T S: &_I?Y {T.’: Tor Cers ) (k1 g)”'e°mf T.afda
.
(3~2)
is the nth multiple reflection in the layer.
The individual terms HE are evaluated as follows.
The Bessel function is replaced by the appropriate Hankel
function (see section 11) and the asymptotic form of the
Hankel function is inserted into 13-10. The integrand
then contains an exponential form
. ) 2L b A AP (Nete: 2 << P& ht\> G3-9)
which is identical in form tc that of the integrals discussed

in section 11 and the saddlepoint contour developed in

aprendix 1.

2 1l/2

Defining R, = (P? + 4(n+1)’t,?) , the saddle point

of the exponent in 13-14 occurs at

[L; = éz~ K\ (\1-!5)
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where K is the complex dielectric constant of region 1.
Thus
. :)‘W:R"‘ . Tt t 5 3%/
z/ Xy AL (TR e n wey\ 3 N v
2 =T c -gd__ TE) 2 TC 2
2 z T (le Tou (ﬁ(o)@\; e e ‘.\.Z—P e da
iduoe ~u?
T U TN S Fuluw)e olu (13- n)
A

~ et JOK w
= s 0K R e g
o

The Fn(O) is given by setting/\a\: in remaining portion

of the integrand of 13-16

- W TE n " met s TofA%)2
’
L
* s e’ da (13-12
e au ‘ . )
and with Ash,
~yNrq r_“‘“"‘—"
J -
an e J2J% 2 4 (t3-13)
Rn R+
du .
;A'
Hg is given by
ofeen e
) . .on, <
2/ < SAM(P 9_ (’J — 0(\,\ T;r:(du) To. (dﬂ)&\g (du)) X
2 " LS vy (3218

(RIS ()™ v oo *)
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K= Py G305
Rwn

HZ appears as if generated by a spherical wave radiated

from a source at a depth
2> =-(axn) &, (17”‘-)

which has the radiation pattern of the half-space interface
modified by the angular dependence of the nth and n+1th
power of Rédu) and P‘f‘;"‘)' the interface Fresnel coefficients
at the geometrical angle between the receiver and the n
image source. This is sketched in Fig. 13-1.

The evaluation of each image contribution by the
saddle point method invokes the usual assumptions that R
is large and the RlO Rol 8 product is considerably less than
unity. The series 13-4 is rapidly convergent in this case.
As in the radiation pattern development, second order effects
which are additiomihead and unhomogeneougrzggd to the inter-
faces are ignored. When the geometric optics expansions are
reasonably valid, neglect of these and higher order terms can
be made with reasonable justification. The most important
second order terms are retained in H, (H.S.).

When R10R128 approaches unity, as it does for loss
free media whenexceeds the critical horizontal wave

numbers for the two interfaces, the above expansion falls

apart. In a geometrical semse this occurs when



-
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| 4
R“ = ('3 - '7\
orx
ZODEL e s (13- ®)
P

for a large number of n.

The geometrical optics series terms for each of the
TE and TM fields generated by the HED are summarizec in
Table 13-1. The expressions given are for the amplitude
of the nth multiple. Thus, the total field a«t a height h
(small w.r.t. g,tl, etc.) is given by

. 3(\-41)“"3 S e,
Fretd = Fied (u.5.) + £ Aul)e &

wto R
w

with An('n) being the quantity listed in Table 13-1.

(13~a)



Fig. 13-1
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The Fresnel coefficients have the argument An as defined by

13-\
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13-3 Normal Mode Solution

The geometrical optics solution discussed in the
last section required three major assumptions. First,
the expansions 13- and 13-6 must be valid; second,
the evaluation of the integral for each term in the
series was obtained by retaining only the first term
of an asymptotic expansion; third, second order waves
were totally neglected in all but the half-space
portion of the solu:zion. While many situations
warrant these approximations, some of the most
interesting geological environments may not meet
criteria for this type of solution.

An alternate form of solution is the normal
mode solution; this solution complements the
geometrical optics solution since it is most useful
in problems where the geometrical optics solution
fails. The normal mode solution is applied primarily
in situations where the layer thickness is small,
usually on the order of the medium wavelength or
less, the interfaces are highly reflective and the
layer is almost loss-free. The normal mode solution
can be applied in situations where the geometrical
optics solution is adequate but computational efficiency
is usually quite a bit less when the snlution is

applied.

L Adrte e s e % o P2
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The basis for the normal mode solution lies in
manipulation of the contour of integration in the
complexJ\ﬂatﬁnalysis of each term in the geometrical
optics solutions and the associated saddle point
contour shows that the limiting contour for P/Z >> 1
is as sketched in Fig. 13~2, This limiting case
P/Z + » is defined as the normal mode integration
contour. The original contour along the real A axis
is deformed to this contour. 1In the process of
performing this deformation, 11 singularities of
the integrand must be accounted for. The singularities
of the integrand are just the poles associated with
the zeros

| - Rie R2B =0 (11-a0)
(TE or TM superscripts implied). As an example of
how the procedure goes, the Hz TE field will be used

as an example

First
- « ? 3“\3
Aa = 5“.“&:" T 6;3- (1ve™®) e Bilaedda G1-a)
-0 L]
= S Qerndue ¥ S + ‘0. +S

6- “\
The second line is the formfthe integrand after

taking the integration path along the real A path
from -« to +» and moving it to the limiting P/Z » =

case shown in Fig. 13-2. The residue sum takes into



Figure 13-2
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account the poles of the integrands crossed in
deforming the contour and integrals are contours
around the branch cuts associated with radicals

(K3 _1\2)1/2. Thus 8; implies

Jui Jivje
S fan = 5 FLdn 4 S Fao ¢4
g Sia o \re
Lﬁ;4~3n

S (F¢~ FQ d N
dKf
where FR and FL denote the values F takes on the

right and left side of the branch cut. The other RBj

contours have the same form 1s 13-22.

Mode
13-3 (i) Normal*wWavenumber/\n

At this point it is informative to examine the
singularities of the integrand. Inspection shows thuat
the only singularities besides the branch-points are
the poles associated with the solution of 13-20. The
nature of the solution of 13-20 is most easily viador-
stood by considering special cases first and tlen
working toward more complicated situations. The
simplest of all models is the one used in electrice:
engineering waveguide analysis. Here Rig = R12 =+ 1

(i.e. the walls; regions 0 and 2)are perfect reflectors

(i.e. perfect conductors) and region 1 is loss free.
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Then 13-20 becomes

311'.",
| t e =e° (13-23)
Taking the log of 13-23 yields
jl‘r'iﬁ‘ = { (2'“.')'7:5 wi o, 13- 1)
Z2Tn §
and
K - A < § @reymae
Cwn /o)t (13-2v)
\
and
1\ e
Auz pd (KI - (cz:':)v) > 67"5)
\
or
a\ '
N, c ot (¢, = ('—'.;v:')> (13- 29)

The solutions A n of 13-23 lie in the complex A plare

as sketched ialow Ion

' 3
L 4
n 2 3 J 2 ' Ju
§
s Fig. 13-3
For (2n+l1) 1 or In < Ji’c"l, the root A n lies on the

real /\ axis while for values greater than J‘R‘l the roots

lie on the imaginary axis. If one returns to the plane

wave spectrum notation, it is readily seen that thc real
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[kn corresponds to waves propagating in the radial
direction whereas the poles in the imaginary axis are
evanescent waves decaying exponentially with the
radial distance. There are a doubly infinite set of
solutions /\' n and in addition, there is a second set
of roots on the other Riemann surface of the radial Fl.
The next step in the discussion is to consider
the situation when region 1 has a finite loss. The

solution for /A n is identical to 13-26 and -27 with

K, comrlex. The solutions /. n are shown below
InA

' c‘.') 1) - &

The poles now lie on the dotted line which is the path
in the complex plane where Im rl z 0. It is raadily
seen that the no-loss case is the limiting case of the

one above with two non-intersecting branches. It @

/4

also apparent that there is no clear distinction
between propagating and evanescent wavec. The wav~s
which formerly were unattenuated with radial distance
have a small attenuation while those exponentially
decayed with radial distance. When the loss is small,

the dotted line lies close to the real axis anA bends
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abruptly upwards near the imaginary axis so that the
evanescent and propagating terminolgy can still be
applied.

The preceding example is of little interest to
SEP applications, but it does show the basic effects
of finite-loss and layer thickness tj. As t] increases
the A n become more closely spaced and more and more
move into the propagating regime.

Two last examples of the behaviour of the /\n
solutions provide insight into the general case to be
considered in a moment. First, the case of R10 =C a
constant. 1If |C| < 1, the upper boundary is leaky and
some energy leaks out of the layer with every reflection
at the boundary. If |C| > 1, the upper boundary is
active or the region 0 is resonant in some way or
another. In the following sketches, the /\ n for the
finite loss case are shown in the positions they would

assumeif |¢| > 1, |¢| < 1 for £/C = 0 and finally |C| =1
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The interpretation of the behaviour is simple. For

|c] > 1, the radial Fl must have an imaginary component
Tz ote)@ (13-28)

such that

~at (3
Hence B > 0 if |c| > 0 and An is moved left and
downwards from the dotted line along which B = 0. If

|c] = 1 but C has an arbitrary phase, the /A n slide up

or down the line B = 0 to yield the appropriate phase
shift.

The preceding examples provide the insight as to
how a real model might behave. The simplest geophysical
model is the case retaining R12 = -1 but taking Rlo as
the boundary between two loss-free media. Thus

SZT‘Lt\

| + R © (\3"30)

1
0

B X
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As a demonstration, the TE case will be discussed in
detail. The TE reflection coefficient has the form

Ro = (12- %)

and examination of the behaviour of R along the real

10
I\ axis shows that \Rlo\ varies as shown below

]
)
i
)
)
i
A

ﬁ a&(_l\.

IR0l

0
\\\\:

H

The wavenumber /\ = XRB corresponds to a ray incident at
at the 1-0 boundary at the critical angle; beyond the
critical angle out ton = SEI', the maximum allowable
horizontal wavenumber the region 1 will permit to be

non-evanesc2nt, the reflection coefficient has an amplitude

of unity mne phase of R

YT(‘O tom .

10

swings form 0 to 'n as A runs from
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or f&<‘j§;, the reflection coefficient is less than 1 and
has a phase of 0. The solution of 13-3® will yield the

positions of A n to be sketched below.

Fi%, 13-9

The positions of the /An can be synthesized by combining

Fig. 13-3, -6 and -7. For A« JE;, IRlol <1 and MAn
must be located up and to the right of the line Im Pl = 0.

e e

For the regionjﬁ; <A< Ky, the /in lie on
the real axis but shifted along due to the finite
phase of RlO' In the above example,jin,n = 1 and
2 correspond to true guided waves while An n =
'3 to = are leaky modes of the layer. These leaky
modes decay exponential with radial (horizontal)
distance due to finite leakage of energy upwards
into region 0. If region 1 is made lossy, the
chaviour is similar to that sketched in Fig.
13-4,

The solution of 13-30 has the corresponding
set of/ln solutions not shown in Fig. 13-9., 1In
addition each Riemann sheet of which there are
now four has its own set of solutions. Thus

there are four doubly infinite sets of solutions fn
The last case to be considered is the one where

regions 0 and 2 are both dielectric media. Then one

must consider the effect of R12 which has the form

=T
Rp = T l% (3-32)
™ =7
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Along the real axis one has ]Rlzi and \Rlol being ene

e
ofptwo forms as shown below

lRlol&lWﬂ.‘

1o 4

R I S Re O
C“‘Q 4%

Yo <& < U
(Ruo\ - \R\a,\

Fig. 3 -0
\N
]
/

J_K.o &-!. I3
Fig. 13=\ Conetl: WedlUalK,

For case 1, the product ]Rlo R12| < 1 except at

B
\r
\
USRI

j\==€?1 while for case 2 the product ‘Rlo R12| = 1 for

r . .
.riz <\ <y Kl. The two cases yield the schematic role

positions shown below
Iw

o 4

°©
SWe SW, S
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For case 1, no truly quided mode can exist. All

A n are complex since there is no /\ for which !Rlo Ry,

= 1l. Energy is continually leaking into the upper and/or
lower halfspace.

For case 2, however, it is possible to generate
unattenuated guided waves since [Rlo Rlzl = 2 for an
interval of A.. 1In this case jio and\fié <A< fil and
N corresponds to rays incident at angles greater than
the critical angle for the two interfaces. The slab
then becomes a dielectric wave guide if the thickness
is sufficiently great to move some of the A. n into
this interval of the real axis. For finite loss in
the media, the A n are pushed up from the real 4\ axis.
In this problem, the branch cuts generate an 8 sheeted

Riemann surface each with its own set of /A n.

13-3 (ii) Normal Mode Amplitude

In the preceding analysis, the normal mode wave-
numbers were discussed in relation to the physical
parameters of the problem. Returning to equation
13-21, the residue series becomes a sum over the

normal mode wavenumbers An. Each /\ n corresponds to a

b s o d .
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simple pole in the integrand. The amplitude of
the residue at each pole then yields the excitation
amplitude of the mode for the given source and layer
geometry.

The amplitude of a mode is obtained as follows
where Hz is used to demonstrate the procedure,.

The integrand of Hz has the form

' AL T1¢€ Te yTo2
L DRSO

l‘no Y€ ve ('3‘13)
( L= 8 | ETY P)
In the vicinity of A n,
AL e TC te
R‘° R\l. (z & 1 ¢ ;—A(‘\o‘\\. a)‘ (A D (\",“)

.5 Y

The residue at the pole /A n is obtained by multiplving

13-35 by (/A-/An) and taking the limit as{l=+/An. Thus

. re
Rasicdlua w = (3"?3) ‘.’..j_\_“ Te (‘**“9) HY (A“ﬂ ("!-ls")
2V (Ay)

"

An M. (aue)

where A, is the normal mode amplitude of excitation
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factor. The asymptotic form of Hl shows that the

1

mode behaves as
3 Hn¥
< G3-30)

—

Je

Thus all modes have a characteristic distance
P in which they exponentially decay beyond detection
unless they have Im A\ " 2 0. In the case In\[Ln 0,
K L

The H3 field may then be expressed as

e pet (
Hy: st Z A~ (2.0) *'j. +h ¥ f,t (13-17)

Examination of.ﬁg“ shows that A, =+ jo as n » =,
Therefore, in any practical situation where P is
finite, the series sum can be truncated without loss

of accuracy. Thus

- ‘
Y, & st 2 A, N +f

ot Sn. F . G-)

*

where M is primarily determined by the geometry.

In addition to the attenuation truncation of the
series, there is another factor which must be considered
as t; *+ 0. The number of‘/x“ on the upper Riemann surface
used earlier actually becomes finite and M + 0 as t, * 0.

Pictorially the A  lie on lines determined by t, as
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sketched in Fig. 13-12. As to tl + 0, polen =1
moves up the contour and the contour wraps itself

onto one of the lower Riemann surfgces.

™ [ J
L A ! /L. . ta
. y A
\ \ 6," ':.' t i
» 6.."“ 3 :: . .
\ \ ' :' . . [ J -:
N s - ES
{,"' N \ E-' !
\ ‘. A3 :'
RN ¥
. \\‘ -
s N \\‘\‘.
* ¥ Re
J%e iy
— — — lappe” Riewmonn surfece
Revugl=1
e © o - lower YWiewaw d3wurfaqe
Fn,. \3=-12

The position of pole 1 is schematically indicated on

the diagram. T ‘a.:,n Huhwary ave +ypical valuer for K =3,

13-3(i) Branch Line Contributions

The final stage of the analysis by the normal mode
technique is the evaluation of the branch-line contributions.
The analysis will not be carried out in detail since it is
identical in form to that considered for the half-space
solutions in section 12. The integrals cannot be evaluated
exactly but asymptotic forms obtained by steepest descent
integration are quite often adequate.

The first thing to be noted is that the '1 integral

is identically 0. The asymmetry of the integrand about the
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branch-cut faces the integral to vanish. The other
two integrals take the form
o P

e Do (n-aa)
8o Pt

S
»

SO

s, e D:’-

(17~ 40)
which are second order lateral and/or inhomogeneous
waves tied to the interfaces.

The above solutions for the normal mode and branch
line integrals are valid except for the case of [Rlzl =1
and Im Ko = Im K; 2 0. In this case, certain critical
values of tl cause a pole to align itself with the
branch~-point. At the same time a pole in the lower
Riemann surface also coalesces with)i;. The result
is a second order pole at the branch point. The
integral in this very special case can be analysed by
subtracting of the residue contribution which yields
a "guided” later’lor leaky wave which has the form

JP

<

w—

as D gets large. Slnce this situation rarely occurs
in real media, its role will not be dealt with in detail.

Orie other point which should be briefly mentioned

[———
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is the pole associated with *he Sommerfeld "surface"
wave. For a dielectric layer which is very thin over
a perfect reflector. This pole can appear on the
upper Riemann surface. As a result, the TM energy
will be channeled into a guided wave for smaller
values of tl than will TE energy. Since t..e real
environments of interest are quite lossy, the

details of this case are primarily of academic interest.

13-3 (iv) Summary

The preceding discussions demonstrate the
development of the normal mode solution. In table
13-2, the A, Do and Dy amplitudes for the various

field components listed in Table 10-4 are summarized.
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14 N-Layered Earth Response : The "Fast'Hankel Transform (FHT)

In the preceding sections, the analysis particular
earth models was carried out by the use of approximate
integration methods. While these results provide a
useful basis to start frcm, the need for a more
generalized model to simulate the presence of several
subsurface interfaces or to model at gradational change
in material properties becomes important when one must
attempt to interpret real data. The next simplest model
for SEP purposes is to consider N-plane layers. The
most interesting models which are virtually intractable
to analysis in a general way are models which exhibit
both vertical and lateral variations in material
properties.

The N-layered model is just an extension of the half-
space and 2-layer model. The spectral forms of the fields
are readily obtained and the main obstacle to determining
the field strengths as a function of spatial position is
the evaluation of the Hankel transform. While the
approximate methods cf earlier sections may be applied,
it becomes very difficult to handle the approximations
required at each step. As a result, a fast numerical
method of determining the Hankel transform directly on

a computer was sought. The result is an algorithm which
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combines the Fast Fourier Transform (FFT) method and
a Gaussian quadrature based on Chebychev polynominals
to directly evaluate the Hankel transform. This
section is devoted to the mathematical niceties
required to reduce the infinite intecral to an
approximate fcrm which facilitates evaluation with
the afore-mentioned numerical quadrature schemes.

The general Hankel transform pair are expressed by

ferr N FR) S N O%=1)

oo
Y =y v ) s av (14-2)

The expressions 14-1 and -2 are identical in form, so
that the evaluation of one by some numerical method
assumes the evaluation of the inverse transform.
The first step in the analysis is to replace the
Bessel function by its integral representation.
" J&cor @

RE Y
Jwe@) = W [T canee’ T 4y (uew)

Now the transformation of integration variables

AA = COSQ (m_ q)
is applied to 14-3 with the result

Gy (! e
Jn(i)?- ..1—‘.. g os weoi . © du ;
< (\_M\)”t (l"n-s)
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Noting now that the Chebychev polynomial of the first

kind and of nth degree is given by

Twlx)s  cos(n cos™'x) (14-2)
and defining
- (o) IxY >4
B(x) = (1¢4~3)
! Ix\ &4

equation 14-~5 becomes

dul) s a“w S 205 " Tula) Cer) é}Aa,lM (14~q)

- (\-M"b'h’

which is readily identified as a Fourier integral transform.
The inverse transform integral associate with 14-6 is

therefore

20377 Twlw) ) -5 3
= Tw(?) ~. Ader (14-10)

(- amar)'ie — o0

With this development complete, 14-1 can now be
rewritten in a more useful form. First, 14-5 is used to

replace Jpy (Ar) in 14-1.

L)

on . ( oAV'M
£ = AR W ATV dudr fo-1)
"™ o Ge un)'s

-W

The integration roles are now interchanged with the result

that

fens @7 S' Tw (&) { rA Flay e’ Mud'\} du (14-12)

w - Q—;-;-;S"‘ 'y

e
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Using the symmetry properties of the Bessel function

Jm(‘3)= (-')“ SV‘(Q)

(t 4-13)
14-9 finally becomes
.Gy o oo 3 A
feer: — f:_(g_) [ oxaye (347\§ da (i4-14)
Q- u) (e
where
G(A) = A€ (A) A?o
= (=0 IAE(N) A<o G 416D
and = F(e) +(_-l)hr=(o) A= o
G : AT (14~ te)
The interior integral in 14-11 is readily identified
as a Fourier integral transform
oo T NG
J
= G(A) e
£ (8) -‘Sp ) AN Clamit)

and 14-11 becomes

arm

v.' {
F() = (J__) 5 Tu(u) & b)) g

G4-18)
g ( l— M')”"

At this stage, the transform has been reduced to the form

amenable for numerical analysis. The two integration steps
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14-14 and 14-15 essentially take the spectral function,
map it into its two dimensional equivalent and finally
do an azimuthal gquadrature to obtain the three dimensional
response.
In the FHT algorithm, 14-14 is evaluated by the
FFT method. Under the assumption that J( A) can be

written or reformatted in a manner that

GC(A) =P o A= e (ra-1a)
e -)\(g
Y S GN @ T (14-20)
Wy

where UN is a limit chosen such that G(A) may be
assumed 0 for all A > “"N. As an example of how
G can be taylored if it does not go to 0 as A9?®®is the

case where

GIA) — < as A~ oo Gq-m)
Defining G, = G ~-C Cre-an?
LT ‘)\“
Y@l <@ + S G.C)\)e"’ AN (Ge-a3)
-Q»
A —> o

In other words the limiting behaviour as

can be analysed and usually an exact evaluation of the

n o et e e s —

. -
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behaviour at high wavenumber can be derived.With the
integration limit to a finite interval, the next step
is to digitize G(A) at equispaced intervals. Thus

the discrete form of G(A) is

~N
Gp = & & GCua) SCA-nn) (is-24)

ne-nd\
Thus 14-17 becomes

N Jna @
D)z 6 T Gluse Cre-as)

Wt

If it is then decided to evaluate ﬁ(@) at a discrete

set of 2N points equalispaced at interval J

'nngb
N J
'&((MS)" o Glwe) & (14-a¢)

Vo Ny A

Noting now that chosing S = '{‘"’-Z' one has

N 3 an(!%‘)
PERICT
which is the conventional form of an FFT with 2N points.,
If one now redistributes Gn znd the subscript notation

by defining

. (l4-28)
Gw * Gay-w nw: N+, an-)

One finally obtains

aN-| e (A%
Gm = & Z Gn e° (lN)

e wm=o,ann  (4-29)
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The second integral is reduced to a numerical quadrature
by use of the general Gaussian quadrature method with
weighting function (1 - uz) -1/2. Without delving into

the details, the result (Abramowitz and Stegqun (1965)) is

| I3 I\ )
(x) dx 2 2 wpu i) (4 -30)
v (1-x?)" net
where
. o™
w“ - /M (" _3,)
- (2“-4)“‘
Xn = (o3 — Cle - 32)

The only remaining problem is to bolt these two quadratures
together. The main difficulty is thatﬁis available

only at discrete points $='ﬂ 8 while it is required at
points XL, In order to complete the guadrature some

form of interpolation scheme is required to map from

m 8 -7 rX;.

If one uses linear interpe |ation, one can write the

piece-wise continuous function

A () < Y (- (d~€5)) + &y, (@~ 53) (14-33)

where

S < ol Waaveyt quv\cdoJ ‘mteger

Combining all the pieces one has
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‘p(r):. (J) (%’)

(1]

The basic assumptions built into this development are

summarized as follows:

1. Band limiting of G(A ) to limits -ty to w)
The Wy are determined by considering the
function Q.

2. The next step is the digitization of G at
interval 4 , The interval £ must be chosen
in order that it will adequately resolve the
spectrum (1 .

3. With the spatial interval determined by
and N, an interpolation routine must be set up

to generate "9 at any arbitrary value of the

argument.

4. The second quadrature requires picking of the
sampling density of the quadrature. This step is
determined by the M for the Chebychev quadrature.
The sampling occurs at the roots of the Chebychev

polynomial of degree M.

With the above algorithm it is a strictly
computational problem for determining the approximate

field strengths over an N-layered earth for any spatial
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position. There are practical limitations, however,
sirce letting, M, N become large which is occasionally
required by some awkward models makes the computational

expensive far too high for routine operation.

Section 15 Summary

The development of all relevant mathematical
forms required for the SEP plane-layered model is
complete at this point. The application of the
theoretical development appears in various papers and
SEP documentation. It is hoped that a record report
similar to this which would present the numerical
tricks and program listings as well as sample computations
which parallel the theory presented here will be completed
in the future.

The preceding book contains most of the relevant
mathematical tricks for analysis of geophysical
electromagnetic problems. The asymptotic expansion
methods and the FHT gquadrature method are more amenable
to conductive earth problems since all spectral
singularities are smoothed out and the numerical

computations are easier.




-0j-

Appendix 1

Numerical Evaluation of Saddle Point Contour

The saddle point method of evaluating some of the Hankel
and Fourier transform integrals is exploited to varying
degrees in the body of this work. 1In this appendix, a
brief summary of the numerical determination of the saddle
point contour is considered.

The saddle point is defined by examining the kernel

function c
N
e ) A-1
In the case at hand, f(A) has the form
ten: Je 2PN A-2

v ( k- ht) M
The objective of the saddle point method is to find

where f has a saddle point and thence to deform the
integration contour into a contour of steepest descent
through the saddle point.

The saddle point of f in the above discussion occurs

at the point where

af _ R RS
:;\ = o = ) ( k4 e *'?) A-3
with the result that
Ne * { L} A-y¢
e £ % at
R: (Plag®)'™ A-e

The physical interpretation of this result should be obvious;
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the maximum result a given spatial position will be
received from those elements of the wavenumber spectrum
which propagate in that spatial direction. Hence the
saddle point can be determined directly from the geometry.
With the saddle point defined, the next step is the
definition of the steepest descent contour. Along this
contour
Yz fing) - w2 a-7
£eapd) s :\kﬂ
where U is a real variable which is identically 0 at
A = Ap. The problem now is to define a contour in the
complex A plane such that f has the functional form (7)
Since the path in the A plane corresponds to the real axis
of the complex u plane, one is attempting to find the

mapping of the real y axis in the complex A plane.

In the vicinity of the saddle point, it is not difficult

to ascertain the contour behaviour. Defining
Ax2p + o A-g

Then

o
F'(I\) L 'F(Ap) + t 2(’\' at n-9

Comparing (.9) with (7) yields
" -'l’.
bz % ("?——lia') wu R-io

Since

0
o

A-n

x

" . - h‘* - -
£ (o) J( -—.i.;—‘) Jgs
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Then

. ktt VI
A= % (‘J ?—-—, > y7 A-12

Pictorially one has
the contours of £(A)-f(Ap)
sketched at the right.
The steepest descent path

passes through the saddle

point as shown. 2 1 -2y

If k is real, the —— Coutours of ) e comis,

saddle point lies on the real e Cowdaury oF JmbONtcoums,
x axis and the steepest descent

T 2
contour passes through the

saddle point at a 135° and -45° angle.

Cuse o w vesl.

steepest descent
contouvr WMeSs

Ae

For some numerical computations,

the exact position of the steepest descent contour is important.
The remainder of this section is related to determining the
exact position of the steepest descent contour numerically.

The most useful starting point in analysing the behaviour

of the steepest descent path is to look at its asymptotic
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limits since the behaviour near the saddle point is well
defined. This is done oy taking
Az AQJF A-3

where A 2k, kR etc. (similarly for u). In this instance

FIA) =) (¥2 «29) - -t A-re
Now
. 31@)":_ 1Bt
¥~ (-Ale * Re Aeis
thus
1 (82T ;
fFeyw j A (2 e’ )+ ’.gJ(‘) A-te
Since u is real and negative the limiting angle # must
be such that
) (B m, )
Re (2 ) +re”> : ® A- N0
Y BeEnm .
dns(z‘.e"( *) +yeaf3> » o Ao

Breaking the bracketed part of (16)into real and imaginary
components and taking the +m/2 factor yields
S 2Uaf 45 2wnB +Pal 45 P b Ae1y

Now, by '

~esiwg +f¢u(3 ~ o v A oo A-are

and

R-ar

S TR B, = r/a
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If the -rv/2 factor is chosen (28&) wculd become
-é-sh\p -SEu»@ +Pt¢:§§' *jfl.o',\s A-22
and (24) would become

‘kw\‘!. =

i
ando

ded (1’7—{3*) R-213

The sign chcice depends or the particular choice of the
branch cuts for the radical (k%- A2)1/2‘ Exampleg of the form
of the saddle point contcur are shown in Fig. 1.

The asymptotic limits are defined by

A U n- A%
. -t -l -
G- 4¢~v(£“) a T~ daw 2% A-ay¥
Re Piig? A-are

A FORTRAN program was written to map the saddle point
contour in the complex ) plane as a function of the

parameters £, Z, and tan & (k2 = (1 + j tan §).

The numerical procedure is a 2 step process., For a
given value of u, an estimate of the corresponding value
of A is obtained by using a weighted combination of the
small u and asymptotic form for large u. The estimate
of X is )e

AC& A‘\.“ (l" ‘) 4+ A 3..,,.5 X L A-27
where

b (“el /H-\“/nl A-28
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From the initial guess lAe, a Newton iterative scheme
is used to zero in on the correct value of A. On the

saddle point contour

e('At) = {:(Ai) __L*Z A- 29

For )Ae one has

£lAe) = A~ urre A-30

where e is the error from the fact that le is not the
correct value of A. On the assumption that Ac is
reasonably close to the correct value Ay, one expands f
about Ae in a Taylor series. (f assumed analytic; in this
example f is not analytic at the branch cut so a few minor

computational tricks have to be used)

) % fae) T A) 2 +Ee) 4t A-3
-~

The next estimate of Aty is obtained by setting

£" ot +§'n c e
a A-32

and solving for & yields

’
Ae = e ¥

X
where A= -‘F't (?'z-:\‘?"zzt A-33
‘FM
In the limit as £f"/f' -+ 0, 33 becomes
OD= - & R-2¢4
.FI
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Near the saddle point, the expression for.) given in
equation 40 is used since f' = 0 at Ap. The choice of
sign for the radical in 40 is the one which makes the
|a] smallest. Far from the saddle point 41 can be used

since f"/f' becomes small as |A] + «.
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Appendix 2

Table of Useful Hankel Transforms
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ABSTRACT

The Surface Electrical Properties (SEP) Experiment was
performed as part of the Apollo 17 Mission. This report
describes measurements made with a scale-model simulation
of the experiment. Included is an extensive set of traverse
patterns taken with a dielectric fluid overlying metal and
dielectric plates both with and without the addition of
various structures designed to simulate various features such
as crevasses, craters, and buried objects. Horizontal-
interface traverses are shown to generally agree with theo-
retical calculations. Various experimental techniques used
are discussed and an index to traverses recorded on magnetic
tape is given,




1.0 INTRODUCTION

This is the final report dealing with modeling activities
carried out in support of the Apollo 17 Surface Electrical
Properties Experimentl. The modeling activities consisted
of operation of a scale model of the SEP experiment, which
utilized a technique known as radin-interferometry depth
soundingz'3 to study the electrical properties of the upper
layers of the moon's surface. Figures 1-1 and 1-2 illucstrate
the SEP experiment and the model respectively.

Previous reports4'5 have discussed in detail the general
design and operation of the model and have included detailed
work concerning antenna patterns and traverse patterns
(recordings of signal strength vs. transmitter-receiver
separation) taken without a dielectric medium present. In
addition, the last report contained a preliminary set of
curves taken using dielectric fluid and the metal plate.

The purpose of this final report is to exhibit the
extensive set of traverse patterns which the model was
designed to produce. Section 2.1 describes traverses made
with a low-loss dielectric fluid over a metal plate at
various depths and inclinations. Section 2.2 describes
similar data collected using a lossy dielectric slab in
place of the metal plate, with the addition of traverses
taken using objects simulating craters, crevasses, spheres,
and irregular blocks positioned in the dielectric fluid.
Both the above sections contain comparisons of the experi-
mental horizontal-interface traverses with theory; general
agreement is apparent,

1-1
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Section 2.3 discusses traverses made using the dielectric

fluid with its loss tangent adjusted to various values.

This group includes traverses taken both with and without
the metal plate using objects simulating craters, crevasses,
mountain-sides, and submerged steps and ridges. Section 2.4
describes data collected using spheres positioned in the
low-loss fluid both with and without the metal plate.
Section 2.5 details traverses collected using flat circular
metal plates simulating a buried waste dump at the DYE-3
site in Greenland. Figures 1-3, 4, 5 illustrate the various
complex structures used.

Section 3 describes antenna results obtained since the
last report and Section 4 discusses various experimental
details. Section 5 contains an index to data which has been
recorded on digital tape.

1-2
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Side view of
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— Plate/slab - forward slopes.

Figure 1-3.
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2.0 TRAVERSE RECORDINGS

All data discussed in this report were obtained with
half-wave dipoles as transmitter and receiver. Transmission
power was in the range 1 milliwatt to 1 watt at a fixed
frequency of 5.9 GHz (corresponding to a freespace wavelength
(wl) of 5.08 cm). Signal detection was performed with a
IN23 microwave diode.

The receiving antenna was driven at .127 wl/sec down
the center of a 30 wl long x 15 wl wide x 15 wl deep fiber-
glass tank (see Figure 1-2) lined with microwave absorber
(Eccosorb CV-3). The tank was filled with Shell Diala
transformer oil having dielectric constant 2.16 and loss
tangent .002.

Except for a few curves in Section 2.3 all traverses
measure the E-Phi broadside component, i.e. both the trans-
mitter and receiver were horizontal and perpendicular to
the traverse direction. Toward the final stages of the model
work it was discovered that agreement between model and thsory
could be greatly improved in the .6 wl depth-range for a
horizontal metal plate by switching from simple half-wave
dipole antennas to more sopthisticated and better balanced
slot-fed half-wave dipoless. These new dipoles were used to
collect all data in Sections 2.1 and 2.2 except 2.1.3. All
other data were collected with simple dipoles.

In order to minimize unwanted background signal, in some
cases in Section 2.1 and 2.2 a sheet of microwave absorber
was positioned vertically in front of the transmitter at
1.5 wl range. This "baffle" (see Figure 1-5) extended down-
ward to .5 wl above the oil's surface. Traverses for which

2-1
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the baffle was in place can be identified by the fact that

the recording begins at approximately 3.25 wl range. Documen-
tation of the small effect of the baffle can be obtained by
comparison of the following pairs of redundant traverses:

1, 32; 2, 18; 87, 91; 88, 98; 89, 107; 90, 115.

The traverses included in Section 2.1 through 2.3 are
plots of digitally processed data which were originally
recorded on magnetic tape. The purpose of the tape is to
permit future convenient access to model data for manipula-
tion and interpretation. The digitization process introduced
high-frequency noise into the data which was removed by
filtering. In some cases additional filtering was used to
attenuate undesirable background signal. The digitization
process also introduced small range errors which seem to be
reflected generally in a shift of the traverses to the right
of about .1 wl. In cases where extremely high range resolu-
tion is needed the original X-Y recorder plots of the raw
data should be referred to. See Sections 4.1, 4.2, and §
for details on recording and processing and an index to
digitized traverses.

Each traverse in Sections 2.1 through 2.3 i: labeled to
the right with a run number and other special information.
In addition each traverse has a rcference mark on the
vertical axis which corresponds to a fixed received power-
level of nominally -25 dBm. Since the transmittcor power-
level is given for each group of traverses a comparison of
absolute signal levels between any two given curves is
possible. A convenient way to do this is to adjust each
reference mark upwards at the rate of 1" for each 15 dBm of
transmitter power; each adjusted rcference mark then repre-
sents a signal puwer-level 25 dB below the transmitter power.
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The threshold power-level of roughly -62 dBm corresponds to
approximately 2.5" below the -25 dBm reference mark.

2.1 TRAVERSES OVER A MLTAL PLATE

In order to simulate a buried perfectly reflecting layer,
an aluminum plate of dimensions 30 wl x 15 wl was designed
for positioning in the metal tank at various depths and
inclinations. The traverses taken accordingly are grouped
in Appendix A. Each curve is labeled with platec depth (D)
and inclination (6). All experimental curves in Appendix A
were digitally filtered to remove unwanted signal of period
approximately .5 wl apparently associated with undesired
reflections off the tank wall at the opposite end from the
transmitter. These reflections interfere with the direct
transmitter energy to set up a standing wave pattern through
which the receiver moves. The filtering has attenuated by
roughly 50 percent the close-range oscillations present for
the greater plate depths (see Section 4.2).

2.1.1 Horizontal Metal Plate

Figures A-1 — A-3 contain plots of digitized data taken
over the full range of metal plate depths uscd. Figures A-4
— A-10 are similar plots for smali depth increments at shallow
depths taken using the baffle. The dashed-line curves arec
theoretical plots of the power associated with the H ficld
component calculated using normal-mode thcory developed by
Dr. A. P. Annan. Where the depth used for thcoretical cal-
culations is different from the valuc given in column "D",
the correct depth is indicated near the cnd of the theory
plot.



Generally good agreement between experimental and
theoretical data is apparent. Some disagrcement at short-
range is apparent, especially near .7 wl and 1.18 wl depths
and at 3 wl and 4 wl depths. There lisagreements are probably
associated with inaccuracies in the mode-theory calculations
near certain critical depths. These depths arc characterized
by a normal mode propagating at or near the critical angle for
the oil-air interface and are given by

d = (2m - 1)[M/4(K' - 1)1/?) mo o= 1,2,3 oo

Where for K' = 2,16 the bracketed quantity ecquals .2321 wl.
Thus .696 wl, 1.16 wl, 3.02 wl, and 3.95 wl are critical depths
possibly connected with the above cited disagreements; indeed
recent numerically calculated normal-modc thecory (sce dotted
curves in Figures A2, A6, A7, and Al10) disagrees in each of
these cases with regular normal-mode thcory. While the dis-
agreement between model and theory is in no casc compictely
eliminated by the introduction of this latest improvement in
the theory, these discrepancics between the results of dif-
ferent methods oi computing the theory at least scrve to
indicate the difficulty of theoretical calculations near the
critical depths. In complete contrast to model results the
normal-mode theory shows an absence of coscillations in a range
extremely near the critical depths (the dashed lines at .69
and 3 wl depths give partial cvidence of this): the numeric-
ally calculated theory at least gives no hint of these nulls.,
It should be pointed out that these regions of disagreement
associated with the critical depths are quite small and are
consequently probably more of academic than practical concern.
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The apparent poor fits at the shallowest depths are
probably duc to the low signal-levels being dominated by
background signal. A smooth, horizontal line indicates that
the total signal is below system response.

Depth accuracy for these horizontal-plate traverses is on
the order of .01 wl except for both 1 wl curves where a sharp
object with a length of 1 wl was used to locatec the o0il's
surface very precisely. At many of thc depths shallower
than 1.5 wl the fits could doubtlessly be improved by trying
different theory depths near the approximate expcrimental
depth.

2.1.2 Metal Plate-Latcral Slopes

Figures A-11 - A-13 contain traverses in which the metal
plate was tilted latcrally (sce Figurc 1-4) at various depths,
Each curve is labeled by the approximate plate depth (D) under
the traverse path and by the approximate lateral inclination
(6). Analysis of these curves and comparison with correcspon-
ding horizontal cases indicatc a gencral rule-of-thumb that
lateral inclinations not grcater than about 2° pcr wavelength
depth do not substantially affect the traverse pattern., Run
47 for 1 wl depth and Run 44 for 2 wl depth exceed this rough
limit and are distorted rclative to more nearly horizontal runs,

2.1.3 Metal Plate Forward Slopes

Figures A-14 - A-22 contain traverses in which the metal
plate was tilted along the forward direction (sze Figurc 1-3).
Each traverse is labeled with the depth of the platc under the
transmitter (D) and the angle of inclination (6) of the plate.
These numbers are both approximate; the depth figures are too
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small by about .02 x 0 and © is 1-2 percent too large.
Positive angles of inclination are tho.e for which the plate
is deepest at the transmitter end of the tank. It migh: be
noted that the depth of the far end of the plate is roi ghly
D - 0/2.

A general tendency is appar.nt for the broad pcak
associated with the angle of the transmitter pattern lobe to
shift to longer range as inclination decrcases. The expected
range of the peak is given by 2d cosO sin(B-0)/cos(g-20).
These ranges have been plotted in Figures A-14 — A-22 as
circles and crosses respectively for 8 chosen first as
the critical angle 42.9° and second as the experimental:y
measured lobe-angle of 57°. The peak seems to usually lie
between these two values.

Associated with the shift of the broad peak to greater
range there is a typical increase in the period of c¢he
far-field oscillations.

Other than these general observations the traverse
recordings are quite sensitive to forward slopes, in contrast
to the case for lateral slopes discussed in Scction 2.2.

Even at a 6 wl depth a changec of *1* trom the horizontal
produces a sizeable effect at far-field. Conscquently, it
appears that if one wishes to analyze in detail peaks and
nulls in field data wherc even slight slopes arc possible,
theoretical plots for the non-horizontal case will be an
absolute ne-escity.
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2.2 TRAVERSES OVER A DIELECTRIC SLAB

In order to model a dielectric interface, a epoxy slab
measured (see Section 4.4) to have dielectric constant 6.75
and loss tangenu .11 was poured from a 10 percent carbon blend
obtained by mixing the following epoxy materials sold by
Hysol (Olean, New York): DP-8-5193 ( 15 percent carbon con-
centrate), R9-2039 (resin), and H2-3404 (hardener). The
relatively high loss tangent was chosen in order to minimize
unwanted reflections off the oil-air interface on the botton
side of the slab. The slab was positioned in the same manner
as the metal plate. Its dimensions were 30 wl long x 6 wl
wide x approximately 2 wl thick.

It will be noted that the noise level of the dielectric
slab traverses (Appendix B) is worse than for the mctal plate
traverses (Appendix A). This is probably due to the fact that
unwanted reflections off the walls and superstructurc of the
tank remain constant while the amount of desired recflection
off the slab is less than for the metal plate. In contrast
4o the case for the oil-metal interface (100 percent reflec-
tion with 180° phase shift), energy incident normally on the
oil-slab interface is only 28 percent reflected and is shifted
roughly 175° in phase upon reflection. For this casc the
complex normal reflection coefficient is given in polar coor-
dinates by the anproximation:
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The traverses discussed in Sections 2.2.1 and 2.2.2
were filtered to remove the half-wavelength background while
those in Sections 2.2.3 — 2.2.7 (except Figures B40 and B41)
were filtered only enough to remove the noise introduced by
digitization (see Section 4.2).

2.2.1 Horizontal Dielectric Slab

Figures B-1 — B-3 and B-4 — B-10 contain large depth
increment and small depth increment curves (taken using the
baffle), respectively, for the dielectric slab horizontally
positioned. Theoretical plots are superimposed as dashed
lines; a value of 6.25 rather than 6.75 was used for the
lower medium's dielectric constant, but the difference is
insignificant. The fits are comparable to those for the metal
plate, except for a better consistency probably beccause of
lessening critical-depth theory problems due to the slab being
a poorer reflector. Low signal-levels are again apparent at
the shallower depths. Some disagreement is possiblc due to
reflections off the bottom side of the slab. In Figure B-1
a fairly good agreement is obtained with a theorctical
curve for the case of a 1A thick slab over c¢il (dotted line).

2.2.2 Dielectric Slab -- Foward Slopes

Figures B-11 — B-18 contain traverses for which the
slab was tilted along the forward direction (see figurc 1-3).
The curves are analogous to Figures A-14 — A-22 discussed in
Section 2.1; the same comments made there apply here and cach
recording is marked with the identical expected pcak positions.
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2.2.3 Crater Over Dielectric Slab

Since the crater Camelot was situated adjacent to the
Apollo 17 EVA 2 it was decided to use a model simulation
of Camelot to briefly investigate its possible effect.
Figures B-19 — B-22 contain the results; thcy strongly indi-
cate that Camelot has no significant effect.

Camelot has approximate dimensions of 600 m diameter x
100 m depth. It was centered approximately 1200 m fron the
SEP transmitter and its nearest edge was approximatelv 100 m
from the EVA 2 traverse-line. Estimates are that at the
Apollo 17 site a K' = 3,54 dielectric medium of depth 20 m
overlies a K' = 6 medium. Our use of the K' = 2.16 oil
as the upper layer is a significant weakness of our modeling
in this case.

Figure 2-1 illustrates with open circles how Camclot
would look relative to the model tank at the different SEP
frequencies. The corresponding scaled interface depth (20 m)
is also given. The cross-hatched circles indicate the
positions of the simulated craters (made from polycthylenc
foam) used in conjunction with the dielectric slab for
Figures B-19 — B-22. Actual slab depths usced are indicated.

Each run is labeled with the slab depth (D) aund range
(R) to the center of the simulation craters. The notation
"REF." denotes reference traverses without craters.

Runs 143 and 146 for craters centered on the traverse-
line for slab depth 1 wl both show modest deviations from
the reference Run 145; however, moving the craters off-center



until their edges are 1/4 wl away from the traverse-line

(i.e. just out from under the 1/2 wl receiver) partially
removes the deviation in both cases. The same crater centered
for slab-depth .5 wl (Figure B-21) also shows no deviation.

Run 150 was taken with one-quarter (see Figurc 2-1) of
a 3.5 wl crater positioned with its edge 1 wl distant from
the traverse-line for a 3 wl deep slab. The same null
results are present as for the other off-center traverses
above. Since Camelot itself was decidedly off center we
must therefore conclude that Camelot did not affect the
Apollo 17 SEP traverses.

2.2.4 Crevasses Over Dielectric Slab

Figures B-23 — B-26 contain traverses taken using

polethylene-foam simulated crevasses over the slab (Figure 1-5).

Section 2.3.4 will contain a discussion of a more extensive
study done using the metal plate. This brief study with

the slab was undertaken to extend the validity of this other
study to the case of dielectric interfaces, and indeed the
results in both cases are quite similar.

In the present case single crevasses of widths approxi-
mately .3 wl, .15 wl, and .1 wl were positioned acro=ss the
traverse path. These crevasses had square cross-sections
of approximately 3 wl, 1.5 wl, and .75 wl dimensions,
respectively. Each traverse is labeled with slab depth and
range of the crevasses.

Runs 152 - 158 (Run 154 is their common reference)
illustrate results for each of the three sizes positioned
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at 5 wl and 15 wl range over a 4 wl deep slab. At the
longer range all three sizes produced the characteristic
.4 wl ripples ending abruptly at the crevasse. At the
closer range the crevasses (particularly the largest one)
seemed to act to jumble up the near-in oscillations.

The smallest crevasse was used again (Figure B-26) for
a 1 wl slab depth and this time the preceding ripples are
visible at both near and far range.

Clearly, crevasses may be expected to be as easily
visible for dielectric interfaces as for a perfectly
reflecting interface.

2.2.5 Spheres Over Dielectric Slab

This is an abbreviated version of a more complete study
(see Section 2.4) of the ¢ffect of spherical scattering
objects. Here again we can conclude that results for the
metal plate and dielectric slab are similar.

Figures B-27 — B-29 illustrate the effect of varying
sizes and composition (metal and dieclectric constant K' = 6)
of spheres centered 4 wl dcep at 5 wl range, with the slab
positioned 6 wl deep. The .5 wl diameter spheres seem to
produce minimal effects, especially at longer range. At
1 wl diameter the effect of thc spheres becomes dominant
and at 2 wl diameter the traverse is totally changed from
the reference.

Figures B-30 and B-31 illustrate the effect of varying
range for the 1 wl diameter, K' = 6 sphere positioned 4 wl
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deep over the 6 wl deep slab (the reference traverse would
still be run 162 in Figure B-27). There is littlec effect

for 0 wl but considerable effect at 5 wl. At 10 wl and
greater range there is a characteristic sequence of about
three following peaks of period approximately 1 wl which
begin directly above the sphere. At 15 wl and greater range
small rapid crevasse-type echoes preceding the sphere appear,.

Figures B-32 -~ B-33 feature the same 1 wl diameter,
K' = 6 sphere now sitting directly atop the dielectric slab
positioned at 2 wl depth. Here again, at 0 wl range the
sphere has little effect. At 5 wl and especially at 10 wl
range the sphere's presence causes large distortions in the
traverse recording. Interestingly, for positions greater
than 10 wl range the total distortion becomes less, even
for the parts of traverses lying beyond the spherec range.
For all non-zero sphere ranges the crevasse-echo type ripples
are present, especially for the 10 wl range spherc.

Figure B-34 illustrates the lessening of the amplitude
of these ripples as the sphere is moved to one side of the
traverse path. Moving the 5 wl range sphere 1 wl to the
side practically eliminates its effect. However, the 10 wl
range sphere had to be moved to 1.5 wl off-center to achieve
the same effect, perhaps only because the ripples were much
larger to begin with.

2.2.6 Simulated Crevasse in Diclectric Slab

To obtain some sort of idea about the effect of a
crevasse located in the buried dielectric layer without
actually cutting into the dielectric slab, a rectangular
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strip of polyethylene foam was attached to the top of the
slab (Figure 1-5). This was done partly under the assumption
that the effects of such a crevasse would be associated with
reflections off its top rather than off its vertical inter-
faces. In position the two strips used had a vertical dimen-
sion of .5 wl and were 4 wl long; their dimensions along the
range-axis ("width") were .25 wl and .5 wl.

Figures B-35 illustrates the effect of the .5 wl wide
simulated crevasse at ranges of 5 wl and 15 wl over the Z wl
deep slab. At the 5 wl position, this crevasse produces
gross distortions out to 15-20 wl while contributing near-in
oscillations of approximately .75 wl. At the 15 wl position,
this crevasse contributes gross distortions at ranges beyond
its position while also producing preceding echo-type ripples
which drop dramatically in frequency as the receiver passes
over the crevasse. The .25 wl wide crevasse in Figure B-36
contributes the same type disturbances substantially reduced.

In Figure B-37 the .25 wl simulated crevasse is
positioned at 5 wl and 15 wl ranges over the 1 wl deep slab.

Its effect at both positions is seen to be small.

2.2.7 Random Blocks on Dielectric Slab

To get some idea of the distorting effect of small
irregular "blocks'", thirteen scraps of the same (K' = 0.75,
loss tangent = .11) material as the slab were arranged on
the slab in an area 3 wl wide extending out to 13 wl range.
The arrangement is indicated in Figure B-38 to scale. Fach
block is labeled L ("large" -- approximate cubes of about
.6 wl dimensions), M ("medium"), and S ('"small" -- dimen-
sions about .15 wl).
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Traverses were reccorded at integer horizontal depths
from 1 wl - 6 wl. The results (Figures B-38 -- B41l) (sce
Section 4.2 for filtering detzails) are disappointing. Only
at one depth (4 wl) is there even a rcmote rescmblance to
corresponding traverses taken without the blocks (Figures B-1 -
B-3). Although this is admittedly a small sample, certainly
indications are that buried blocks must be a small fraction
of a wavelength before their effects can be treated as
perturbations and hopefully filtered out. A very crude
quantitative estimate can be obtained as follows. A .6 wl
block is about .9 '"wavelengths-in-the-medium" for the oil.

If we arbitrarily choose .5 wavelengths-in-the-medium as our
maximum-size standard, then for a K' = 4 upper laycr,
buried blocks would necessarily be .25 free-space wavelengths
or under before one could hope to obtain useful SEP data.

2.3 VARIABLE-LOSS DATA

A variety of data was collected both with the pure oil
and with the o0il doped to various loss-tangent valucs with
benzonitrile obtained f.om Velsicol Chemical Corporation
(Chicago). Unfortunately, the higl loss-tangents contributed
to low-signal levels and consequent.y much of this data
suffers from high noise levels. The curves discussed below
were plotted from digitized data. The traverses included in
Sections 2.3.1, 2.3.2, and 2.3.6 were filtered to remove half-
wavelength background; all other curves werc filtcred only to
remove digitization noise (see Sections 4.1 and 4.2). The
original curves were incorporated in a memo entitled "SEP
Simulation Model V"’. The approximate measured values of loss
tangent/dielectric constant are as follows: .002/2.10,
.012/2.17, .025/2.21, .042/2.21, .073/2.30, .142/2.48
(benzonitrile 3 percent by volume).
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2.3.1 Half-Space at Various Loss-Tangents

Figures C-1 and C-2 include traverses recorded at each
loss-tangent used, with the tank empty of objects. These
traverses were intended to simulate half-spaces but obviously
they do not, apparently because unwanted reflections off
the tank wall and superstructure were too large. Therefore,
these traverses can more reasonably be taken as measurements
of the background signal level for the oil-tank. Two
traverses are recorded at .002 loss-tangent -- Run 199 with
the transmitter-receiver pair identically oriented and
Run 200 with the receiver rotated 180°. The odometer signal
for Run 201 was artifically introdiced during digitization,
since it was inadvertently left out during recording of the
FM data.

2.3.2 Horizontal Metal Plate at Various Loss-Tangents

Figures C-3 — C-17 contain suites of large-increment
depth curves for each of the six loss-tangents used. As
loss-tangent increases the effect of the plate diminishes
to the point that at longer range the traverse recording
is independent of plate depth, i.e. the signal associated
with the plate becomes buried in the high background signal
level. Insofar as comparisons can be made, the traverse
pattern changes little with loss-tangent. The odometer
signals for Runs 216-222 were introduced artifically as in
Section 2.3.1. Comparison of plots of the digitized and
original data showed that no significant error was introduced
by this.

2-16
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2.3.3 Crevasses in Half-Space

Figures C-18 — C-22 contain half-space traverses taken
with single crevasses (Figure 1-5) simulated by a wedge of
lossless, non-porous polyethylene foam of estimated diclectric
constant 1.,1. It was desired to simulate a crevassc of
length 30 m, depth 30 m, and width 3 m at the top tapering
downward to zero width. At 32 MHz this corresponds to a
crevasse of dimensions appioximately .3 wl top width x 3 wl
length x 3 wl depth, at 16 MHz .15 wl x 1.5 wl x 1.5 wl,
and at 8 MHz .1 wl x .75 wl x .75 wl. The crevasscs were
oriented at 0°, 45°, and 90° angles (0 in the figures)
relative to the traverse path, with 0° corresponding to the
width dimension lying along the traverse line. All the
single crevasses were centered at 5 wl rangc (R).

Two field components were measured: broadside E-Phi
(both dipoles horizontal and oriented perpendicularly to the
traverse-line) and E-Rho (same as E-Phi broadside except
the receiver is oriented parallel to the traversc-line).

All crevasse recordings have been filtered to rcmove only
high frequency digitizution noise. However, this is not
true of the reference traverses in Figure C-18 from which
most of the half-wavelength signal has becen removed. The
lowest loss tangent of ,002 was used for all curves in this
section.

Analyzing Figures C-18 — C-22 it is apparent that only
Runs 257 and 263, both E-Phi components with crevasse

cutting perpendicularly across the traverse-line, contain
even barely visible perturbations due to thc single crevasses.
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Figures C-23 and C-24 contain traverscs taken with a
set of six .15 wl x 1.5 wl x 1,5 wl (16 MHz) crevasses all
parallel and spaced 1.5 wl apart. The crecvasse set was
rotated about its center, which was positioned at 9 wl range

(R). At the 0° position the array extends from S wl to 13 wl.

As in the singel crevasse case, the only significant distor-
tions are for the E-Phi perpendicular-crecvasse case.

2.3.4 Crevasses Over Metal Plate

Figures C-25 — C-37 contain traverses taken with
simulated crevasses positioned over the metal plate which
was held at a constant 4 wl depth. The crevasses were
positioned in an identical fashion to that of the previous
section and the same terminology is used for labeling the
curves. In a2dition to traverses analogous to thec low-loss
traverses in the previous section, data was collected at
three higher losses for the E-Phi component only. Note
here also that the E-Phi reference curve has been filtered
to remove .5 wl signal; all other curves have been filtered
as in the preceding section.

Figures C-26 — C-29 illustrate the sensitivity of the
size of the distortion produced to the size of a singlc
crevasse placed at 5 wl range. The .3 wl wide (32 MHz)
crevasse produces sizeable distortion+ for all components
and orientations while the smaller .15 wl wide (16 MHz)
crevasse causes significant distortion only for the E-Phi
perpendicular crevasse case. Note in Runs 276 and 282 that
the period of the disturbances associated with the ncar-in
(5 wl range) position is about .6 wl in contrast to thce
characteristic .4 wl echo-ripple produced by morec distant
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crevasses (see below and Scction 2.2.4). Figures C-30 and
C-31 show again the smallness of the perturbation produccd
by small crevasses (see Runs 226 and 236 for rcference
traverses).

Figures C-32 and C-33 illustrate the effect of the set
of six 16 MHz crevasses. In contrast to the half-space
case, distortions are produced for all components and
orientations. ‘lote the shift downward of the period of the
oscillations in Run 294 as range increasecs. Figures (-34 -
C-37 contain recordings at higher loss-tangents of the
E-Phi component at 0° and 90° orientations of multiple-
crevasses. Comparing Figures C-35 and C-36 it seems apparent
that there is a sharp drop-off in crevasse visibility
between 16 and 8 MHz.

2.3.5 Crater

During the SEP Juneau Ice-TField Expedition a small
crater was formed by use of explosives. Rather unsuccessful
efforts werc made to model this feature. The crater has
approximate dimernsions of 11-14 m diameter x 3.5 m depth,
and was located at a range of 263 m at an offsct from the
traverse line of 10 m. These dimensions were modeled at
32 and 15 MHz with polyethylcne foam objects.

Figures C-38 — C-40 illustrate the cffects of the
simulated crater at various loss-tangents for the half-spacce
case and for onc arrangemecnt cver the 4 wl deep plate.
Without exception, comparison of these curves with the
corresponding reference curves in Figures -1, -2, and C-14
reveals only very minor perturbations associated with the
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crater simulants. Undoubtedly this is partially duc to the
high loss-tangents and consequent large background signal.

It seems quite likely that for optimum conditions crevasse-
like ripples should precede a crater which is placed quite

near the traverse-line; however, this study indicates that

these ripples would be small in absolute amplitude.

2.3.6 Mountain, Step, and Ridge Simulations

This last group of digitized curves (all L[-Phi broad-
side) was concerned with studying the possible effect of the
Juneau Ice-Field Data of the valley side and of suomerged
bottom irregularities (Figurec 1-5). Since these features
would have been most visible at the lower frcquencies where
the loss-tangent of ice is greatest, modeling wa. done at
high loss-tangents where previously noted high background
signal levels ex.sted. The longer range portions of the
recordings should be ignored due to high background signal
levels, since traverses at the low-frcquencies simulated are
typically short in terms of wavelengths, and since in some
cases the simulated objects did not extend the whole length
of the tank.

Figures C-41 — C-45 contain traverses taken using flat
metal plates to simulate the presence of a reflective
mountain-side which is submerged and inclined at 30° from
the horizontal. The actual distance in thc model of the
transmitter from the base-line of the mountain-side was
varied to maintain the scaled distance corresponding to
173 ft. (approximately 1.4 w1, .7 wl, and .35 wl at 8, 4,
and 2 MHz, respectively). Traverses were run in three



directions relative to the base-line; © is the angle be-
tween the traverse-line and base-line (c.g., 90° corresponds
to a traverse made perpendicularly away from the mountain-
side). The modeled frequency in MHz is given for cach

curve. It can be seen from the effect of orientation changes
that the simulated mountain-side has a large effect;
comparison of Figures C-42 and C-43 at short range indicates
that changes in orientation are dominant over changes in
transmitter to base-line distance.

Figures C-46 — C-51 jillustrate the effect of an
irregularity in a submerged horizontal reflective layer in
the shape of a 200 ft. rise or step in the depth of the
bottom layer. The connection between the 490 and 290 ft.
deep portions was a 45° ramp. This feature was modeled with
metal shapes at 8, 4, and 2 MHz at loss-tangents of .042,
.073, and .142, respectively. The 490 ft. deep lowcst
portion of the bottom was 4 wl, 2 wl, and 1 wl decep at these
respective frequrncies (see traverses labeled as references).

The transmitter position and traverse direction are
indicated for each traverse by a two digit number in the
column labeled "TR" ("transmitter-receciver'"). The first
number (1 equals '"top", 2 equals "bottom") indicates whether
the transmitter was positioned over the top of the ramp or
the bottom. The second number (1 equals '"toward'", 2 equals
"away'", 3 equals '"along") indicates whether the traverse-
path was toward the raised portion of the bottom, away from
it, or along the 45° connecting ranp. Figures 50 and 51
contain small sketches indicating the step's position and
size relative to the oil-depth at 2 MHz. At thc 4 and 8 Miz
frequencies the step is twice and four times larger,
respectively.



For a given loss tangent, runs having the same sccond
digit differ only in that the step was moved slightly recla-
tive to the transmitter. The differences in these recordings
are therefore a useful measure of the effect of the ramp
itself. Comparisons of the traverses in which the ramp docs
not lie under the recorded portion of the traverse (those
labeled 22, 12, and 23) with the corresponding refecrence
traverses also indicate the visible effect of the ramp.

Both these comparisons indicate that the dominant naturec of
the presence of the steps tends to diminish as the modeled
frequency decreases and the loss tangent correspondingly
increases. For medium ranges the curves labeled 21 and 11

are almost certainly controlled by the 290 ft. depth, i.e.,
they would resemble simple horizontal plate traverses modeling
a 290 ft. reflector depth.

Figures C-52 — C-54 contain traverses simulating a
reflective 200 ft-high ridge having 45° sides and positioned
on a horizontal reflecting bottom located at a depth of
490 ft. These traverses are analogous to thz step “raverses
discussed immediately above and are notated similarly.
Figure C-54 indicates the ridge size and position at 2 MHz.
Reference curves for Figures C-52, C-53, and C-54 are Runs
335, 341, and 347 respectively.

As might be expected, the six ridge traverscs labeled
22" and "23" are identical to the corresponding six step
traverses similarly labelcd. Comparison of the remaining
three traverses (laheled "21") to the corresponding refercnce
curves listed above graphically exhibits the effect of the
ridge in the case when it is placed just in front of thc
transmitter.
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2.4 SPHERICAL SCATTLERING OBJECTS

In order to get a preliminary idea of the effect on
traverse data of the presence of buried scattering objects,
spherical objects of varying size and composition were posi-
tioned in the oil tank both with and without the metal
reflecting plate.

Three different sphere compositions were used: solid
teflon (K' = 2.1), thin-walled hollow fiberglass spheres
loaded with low-loss K' = 6 material, and aluminum foil
covered spheres (at 6 GHz the foil used is 20 penetration
depths thick, therefore tae spheres are effectively solid
metal). Sphere diameters ranged from 3 wl to .5 wl (wl = 2'").

S

For the most part, three basic positions were used, all
located in the vertical plane containing the traversc path:
(1) 16 wl out and 2 wl deep (far out and shallow), (2) 5 wl
out and 4 wl deep (in the transmitter beam), (3) 4 wl deep
under the transmitter.

Figures D-1 — D-17 contain reduced reproductions of the
original recordings. As indicated in small sketches in each
Figure, d 1is the plate depth (d = = implics the half-space
case without the plate), D 1is the sphere diameter, and
d' and y the depth and range, r2spectively, at which the
sphere is centered. Short horizontal marks to the left of
each curve indicate a received power level of approximately
-37 dB relative to the transmitter power. The reccived power
scale of 15 dB/inch is indicated in Figure D-1. The deep,
almost vertical minimas in Figures D-6, D-10, and D-14-17
are due to an instrumentational problem and should be
treated as ordinary minimas.
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The data genere*ed can be thought of as providing
insight to the following question: '"Given a specific loca-
tion, what is the effect of the presence of a buried object
at that location as a function of the object's size and
composition?"

In general the effects noted werc quite complex but some
features did stand out. Understandably, the effect of the
scatters was more apparent in the half-space (Figures D-6 -
D-17) than in the two-layer case (Figures D-1 — D-5),
since power levels are generally larger in the two-layer
eawvironment. JIn all cases the teflon spheres were partically
"invisible", which was to be expected due to the low dielectric
constant contrast between teflon and our oil (2.1 vs. 2.16).
The metal spheres were, somewhat surprisingly, only slightly
more "visible'" than the K' = 6 spheres; however, K' = 6
material was in fact used because its K' being approxi-
mately 3 times XK' for the 0il supposedly makes it a good
reflector.

0f the three basic scatterer positions listed above,
the one at which the most prominent effects were noticed
was predictably the position in the transmitter beam
(Figures D-3 and D-10 — D-13). Only in thi asition were
the 1 wl and .5 wl diameter metal and K' = . spheres signi-
ficant; at the other position even the 2 wl spheres were not
expecially prominent. Other effects noted for this "beam"
position were broad peaks caused by the 3 wl diameter
spheres at approximately 15 wl, and sizeablec incrcases in
the half-space power levels.

2-24



At the "under transmitter' position (Figures D-1 — D-2
and D-6 — D-9) the 2 wl and larger spheres caused changes in
the near-in region and increased half-space power levels.

For the '"far-out'" positions (Figures D-4 — D-5 and D-14 — D-17)
two features are apparent: disruption of the usual pattern
at ranges beyond the scatterer position (little distruption
of near-in signals by retro-reflection from far-out objects
was noted), and the addition of small but quite visible
short-period oscillations having periods in the .4 wl — .8 wl
range (the standing wave pattern in the region between a
point-source and a plane-reflector is .5 wl) which disappear
beyond the scatterer. 1In the half-space case these
short-period oscillations decrease in period from roughly

.8 wl to .5 wl as the receiver nears and passes over the
scatterer, but in the two-layer case (both for plate depths
of 6 wl and 2 wl) the oscillations increase somewhat from

.5 wl as the receiver nears and passes over the scatterer.
Both features listed above are readily apparent in a suite

of two-layer curves with a scattering sphere placed at
various ranges (see Figure D-4).

2.5 DYE-3 SIMULATION

Figures E-1 — E-2 contain a single set of traverscs
simulating the effect of a buried waste water pit at the
DYE-3 site in Greenland. The pit for our puriposcs consists
of a discus-shaped region of contaminated snow which
supposedly would be reflective. The top of tle pit is
approximately 100 ft., deep and the pit's diameter is approxi-
mately 120 ft. These dimensions were modeled at the six
SEP frequencies using a set of thin, flat metal discs
(Figure 1-5) having tiie appropriate diameters and positioned

2-25



oy

at the appropriate depth. All six discs weie positioned at
the same range of 5 wl. One hundred feet corresponds to
approximately .1, .2, .41, .81, 1.63, and 3.25 wi for
frequencies 1 through 32 MHz, respectively.

The range and diameter of each disc and the corresponding
frequency of each traverse are indicated on cach curve.
Also indicated is the 'disc's image' which is the portion of
the traverse-line where the receiver receives direct energy
reflected specularly from the disc.

The disc's presence begins to affect the pattern at
2 and 4 MHz in very narrow regions just above each disc's
position. AT 8 MHz the distortion is evident out to 15 wl
range. At 16 and 32 MH. the disc's effect is totally
predominant over the full traverse and at 32 MHz there is
a very strong peak in the image area. Observationally, it
appears that the waste dump would be come nouticeable at
8 Mhz as a large maxima located just beyond its location.
Interestingly, there arec half-wavelength ripples preceding
the disc at 8 and 16 MHz.
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3.0 ANTENNA PATTERNS

3.1 HORIZONTAL ELECTRIC DIPOLE

The antenna patterns in Figure 3-1 were included in
previous reports. Figure 3-2 illustrates the coordinate
system used (all horizontal dipoles were oricnted parallel
to the x-axis). The substantial difference betwecen the
measured and theoretical E; (y-z) dipole patterns8 for the
oil-air interface was an immediate cause of concern. The
patterns in Figure 3-1 were measured at a receiver radius
of 3 wl; Figure 3-3 shows that the mecasured pattern of
concern tends to '"droop' downward toward the theoretical
pattern (with its power maximum at the oil-air critical angle)
as the radius is increased to 6 wl. Figure 3-4 illustrates
that the 3 wl radius pattern droops as the loss tangent is
increased to apprcximately .142; however, this droop is
approximately equal to that expected due to the mecasured
increase in the oil's dielectric constant associated with
the addition of the high-loss fluid. A skirt dipole6 was
also fabricated, but its pattern (top of Figure 3-5) was
very similar to that of the conventional dipoles.

Apparently then, the E: (y-z) pattern measured can bc
made to agree more nearly with theory only by increcasing the
receiver radius. Since the theoretical pattern is calculated
at infinity and since antennas with directional patterns
typically have extended near-field distortions, it seems
reasonable to conclude that the measured E? (y-z) pattern is

¢
valid.
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3.2 VERTICAL ELECTRIC DIPOLL

The skirt dipole mentioned previously was also oriented
vertically, thus constituting a vertical electric dipole.
The patterns measured are given in the bottom part of
Figdre 3-5 along with theoretical patterns taken from
Coopere. Interestingly, the disagreement with theory is
about the same for the vertical as for the horizontal
electric dipole.

3.3 VERTICAL MAGNETIC DIPOLL

In an attempt to construct a truc magnetic dipole for
the model a loop of diameter .04" ( .02 wl) was fabricated
from .02" diameter coax. This loop was of slightly smaller
size measured in wavelengths than the Apollo 17 SEP receiver
loops were at 32 MHz. Although the loop appeared physically
suitable, its antenna patterns (Figure 3-6) were disappoint-
ing; quite possibly simply because the loop was not much
larger than the feed coax. However, when oriented as
receiving antenna in the direction indicated in Figure 3-6
the traverses recorded were essentially iden%ical to standard
traverses.

3-2

- o ——— ea = AW e e . —— - “ - . -

© s



Bix-n)

tlxn)

!:(1-1)

2
LA )

HN

— Antenna patterns.

3-3

Figure 3-1

S Seeou A hoy : j
S — i
g S e
Srobet s e 5
iz S :
] st
SR i b e
-
—
. -
o 4 3 i
I - i .
- +] 3
= bé o3 i ]
P <o Yim M 3 s
pee 2e0e ad 2 ]
+y
yead o
i 1 |
: r m
$ 1 - ” 3 “
It
t 1. :
T
m H
24 4 -
. .
:
:
b Bt etibts = o b
‘ ) N bis 4 .
L pas 114t PORAS S ”mm POS A0
3 e e 8 1 §0se 4] 4
I3 e 125 SOt S res : +
¥ I3 8¢ + Wl. . m
e i odd
3 it oy 438 i O g
CDEA DO R FE NNy + 4 < -3 e
+ N 4 b Bl ER N - i
S Ly 1 by sobus 04 w..v T Jbe SRBe: fmww“ 1 be i 11
4 + .o - . .
S R B 244 WA PP 3 1T
e ) 8- DOR {is ¢ I35 —i - of.
AR A 2 -t + -

i
[} i

dipole-A
dipole-3
lecp
theeretical
poiat dipole
digele-A
dipele-3

AIR

OIL-AIR




2 ! ¢
Ee(x-z)___,4 2.

Figure 3-2. — Antenna measurement coordinate system.
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! Half-wave Electric Dipole

; At 0il-Air Interface--

, Theoretical and Faperimental
2 , Patterns

Angle of
Power Maximum
+++ Cooper--K'=2,16....... 43"
~— 6) radius............. 52°
Experimental --~4.5)\ radius........... ~54°
e 3) radius............. 57°

Figure 3-3, — Antenna pattern at various radii,
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Figure 3-4. — Antenna patterns for high loss-tangent.
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Measured Theory
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Electric Dipole
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Vertical
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Figure 3-5. — Skirt dipole antenna patterns.
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Figure 3-6, — Magnetic dipole antenna patterns.
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4.0 EXPERIMENTAL DETAILS

4.1 TAFE RECORDING SYSTEM

The system designed for recording model data is illus-
trated in Figure 4-1. It essentially consists ol a mechunism
for conversion of the analog signal strength voltage to a
frequency modulated signal suitable for magnetic tape
recording. The dependence of frequency on signal (in this
case 72.6 Hz/dB) is dectermined (see Figure 4-1) by the tripie
product of the log-amplifier output factor (.02 volt/dRB), the
amplification factor (6.05), and the VCO conversion factor
(600 Hz/volt).

The system was initialized so that a 30 mV recciver-
diode signal (corresponding to the received power-level of
about -25 dBm above which the 1IN23 diode began to be
noticeably non-linear) was recorded as 3000 Hz signal. In
the VCO (left) channel each traverse was begun with a short
voice a~notation followed by a 3500 li